File size: 10,939 Bytes
b1b09d8 10e9b7d 95555bb 87340ea b1b09d8 87340ea 38a1a77 95555bb 38a1a77 4dcc8e2 b1b09d8 95555bb b1b09d8 38a1a77 b1b09d8 4dcc8e2 b1b09d8 4dcc8e2 b1b09d8 38a1a77 b1b09d8 38a1a77 4dcc8e2 cd32eb4 95555bb 4dcc8e2 38a1a77 b1b09d8 38a1a77 4dcc8e2 2d9c7ce 4dcc8e2 15b6891 b1b09d8 4dcc8e2 38a1a77 4dcc8e2 c3f6914 cd32eb4 b1b09d8 80c837c 38a1a77 95555bb 80c837c 95555bb 7e4a06b 95555bb e80aab9 95555bb b1b09d8 31243f4 4dcc8e2 b1b09d8 31243f4 95555bb 38a1a77 4dcc8e2 95555bb 38a1a77 95555bb 4dcc8e2 80c837c 95555bb 80c837c 4dcc8e2 95555bb b1b09d8 95555bb b1b09d8 38a1a77 95555bb 38a1a77 95555bb 4dcc8e2 95555bb 38a1a77 95555bb 4dcc8e2 95555bb 38a1a77 95555bb 38a1a77 4dcc8e2 38a1a77 95555bb 4dcc8e2 95555bb 4dcc8e2 95555bb b1b09d8 4dcc8e2 95555bb 4dcc8e2 95555bb 4dcc8e2 3c4371f 4dcc8e2 e80aab9 b1b09d8 95555bb 4dcc8e2 b1b09d8 38a1a77 4dcc8e2 b1b09d8 4dcc8e2 b1b09d8 95555bb e25ef11 95555bb 4dcc8e2 38a1a77 4dcc8e2 95555bb e80aab9 b1b09d8 cd32eb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
""" Enhanced Multi-LLM Agent Evaluation Runner with Agno Integration"""
import os
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
# Import the enhanced classes from veryfinal.py in the same directory
try:
from veryfinal import (
build_graph,
UnifiedAgnoEnhancedSystem,
AgnoEnhancedAgentSystem,
AgnoEnhancedModelManager
)
VERYFINAL_AVAILABLE = True
except ImportError as e:
print(f"Error importing from veryfinal.py: {e}")
VERYFINAL_AVAILABLE = False
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Enhanced Agent Definition ---
class EnhancedMultiLLMAgent:
"""A multi-provider Agno agent with NVIDIA + open-source model integration."""
def __init__(self):
print("Enhanced Multi-LLM Agent with Agno Integration initialized.")
if not VERYFINAL_AVAILABLE:
print("Error: veryfinal.py not properly imported")
self.system = None
self.graph = None
return
try:
# Use the unified Agno enhanced system
self.system = UnifiedAgnoEnhancedSystem()
self.graph = self.system.graph
# Display system information
if self.system.agno_system:
info = self.system.get_system_info()
print(f"System initialized with {info.get('total_models', 0)} models")
if info.get('nvidia_available'):
print("β
NVIDIA NIM models available")
print(f"Active agents: {info.get('active_agents', [])}")
print("Enhanced Agno Multi-LLM System built successfully.")
except Exception as e:
print(f"Error building enhanced system: {e}")
self.graph = None
self.system = None
def __call__(self, question: str) -> str:
print(f"Agent received question: {question[:100]}...")
if self.system is None:
return "Error: Agent not properly initialized"
try:
# Use the enhanced system's process_query method
answer = self.system.process_query(question)
# Additional validation
if not answer or answer == question or len(answer.strip()) == 0:
return "Information not available"
# Clean up the answer
answer = answer.strip()
# Ensure proper formatting for evaluation
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
return answer
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
return error_msg
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Fetch questions, run enhanced Agno agent, and submit answers."""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Enhanced Agent
try:
agent = EnhancedMultiLLMAgent()
if agent.system is None:
return "Error: Failed to initialize enhanced agent properly", None
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available"
print(f"Agent code URL: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# 3. Run Enhanced Agno Agent
results_log = []
answers_payload = []
print(f"Running Enhanced Agno Multi-LLM agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
try:
submitted_answer = agent(question_text)
# Additional validation to prevent question repetition
if submitted_answer == question_text or submitted_answer.startswith(question_text):
submitted_answer = "Information not available"
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
print(f"Error running agent on task {task_id}: {e}")
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": error_msg
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Enhanced Agno Multi-LLM Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Enhanced Multi-LLM Agent with Agno + NVIDIA Integration")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
**Enhanced Agent Features:**
- **NVIDIA NIM Models**: Enterprise-grade optimized models for maximum accuracy
- **Open-Source Models**: Groq, Ollama, Together AI, Anyscale, Hugging Face
- **Specialized Agents**: Enterprise research, advanced math, coding, fast response
- **Intelligent Routing**: Automatically selects best model/agent for each task
- **Advanced Tools**: DuckDuckGo search, Wikipedia, calculator, reasoning tools
- **Agno Framework**: Professional agent framework with memory and tool integration
**Available Model Providers:**
- **NVIDIA NIM**: meta/llama3-70b-instruct, meta/codellama-70b-instruct, etc.
- **Groq (Free)**: llama3-70b-8192, llama3-8b-8192, mixtral-8x7b-32768
- **Ollama (Local)**: llama3, mistral, phi3, codellama, gemma, qwen
- **Together AI**: Meta-Llama models, Mistral, Qwen
- **Anyscale**: Enterprise hosting for open-source models
- **Hugging Face**: Direct model access
**Routing Examples:**
- Enterprise: "Enterprise analysis of quantum computing" β NVIDIA NIM
- Math: "Calculate 25 Γ 17" β Advanced Math Agent
- Code: "Write Python factorial function" β Advanced Coding Agent
- Research: "Find Mercedes Sosa discography" β Enterprise Research Agent
- Quick: "Capital of France?" β Fast Response Agent
**Setup Requirements:**
- NVIDIA_API_KEY for enterprise models (optional)
- GROQ_API_KEY for free tier models
- Other API keys optional for additional providers
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " Enhanced Agno Multi-LLM Agent Starting " + "-"*30)
# Display system status
if VERYFINAL_AVAILABLE:
try:
test_system = UnifiedAgnoEnhancedSystem()
info = test_system.get_system_info()
print(f"β
System ready with {info.get('total_models', 0)} models")
print(f"π Model breakdown: {len(info.get('model_breakdown', {}).get('nvidia_models', []))} NVIDIA, "
f"{len(info.get('model_breakdown', {}).get('groq_models', []))} Groq, "
f"{len(info.get('model_breakdown', {}).get('ollama_models', []))} Ollama")
except Exception as e:
print(f"β οΈ System initialization warning: {e}")
else:
print("β veryfinal.py not properly imported")
demo.launch(debug=True, share=False)
|