File size: 17,064 Bytes
5092552 d4557ee f4505e9 5092552 e292008 1fa6961 f4505e9 0c69489 e292008 0c69489 e292008 f4505e9 5092552 a979f92 5092552 a35ea13 5092552 f4505e9 a979f92 5092552 a979f92 5092552 f0e66e7 f4505e9 a979f92 5092552 f0e66e7 1fa6961 f4505e9 a979f92 5092552 f0e66e7 cc467c2 f4505e9 a979f92 5092552 a979f92 f4505e9 a979f92 5092552 f0e66e7 a55679f f4505e9 5092552 25c1140 e292008 5092552 a55679f 5092552 a55679f 25c1140 d4557ee 0f81d99 f4505e9 9a3d597 5092552 25c1140 e292008 5092552 a55679f 5092552 a55679f 25c1140 d4557ee b1b6e20 5092552 a55679f 5092552 e292008 f4505e9 e292008 d4557ee 5092552 f4505e9 5092552 e292008 5092552 e292008 5092552 e292008 5092552 a55679f d4557ee a55679f 5092552 e292008 5092552 e292008 a55679f 5092552 a55679f 5092552 a35ea13 5092552 e292008 5092552 a55679f e292008 5092552 0c69489 5092552 0c69489 e292008 5092552 0c69489 5092552 0c69489 e292008 5092552 0c69489 5092552 a55679f 5092552 0c69489 e292008 0c69489 5092552 0ab2059 5092552 d4557ee 0f81d99 0c69489 5092552 0c69489 5092552 72c7dbb 5092552 a35ea13 5092552 0c69489 5092552 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
"""
Enhanced Multi-LLM Agent System with Question-Answering Capabilities
Supports Groq (Llama-3 8B/70B, DeepSeek), Google Gemini, NVIDIA NIM, and Agno-style agents
"""
import os
import time
import random
import operator
from typing import List, Dict, Any, TypedDict, Annotated, Optional
from dotenv import load_dotenv
from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_groq import ChatGroq
# Load environment variables
load_dotenv()
# Enhanced system prompt for question-answering tasks
ENHANCED_SYSTEM_PROMPT = (
"You are a helpful assistant tasked with answering questions using a set of tools. "
"You must provide accurate, comprehensive answers based on available information. "
"When answering questions, follow these guidelines:\n"
'1)You are a helpful assistant tasked with answering questions using a set of tools.
'2)Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:'
'FINAL ANSWER: [YOUR FINAL ANSWER].'
'3)YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.'
'4)Your answer should only start with "FINAL ANSWER: ", then follows with the answer. '
)
# ---- Tool Definitions with Enhanced Docstrings ----
@tool
def multiply(a: int | float, b: int | float) -> int | float:
"""Multiply two numbers.
Args:
a: first int | float
b: second int | float
"""
return a * b
@tool
def add(a: int | float, b: int | float) -> int | float:
"""
Adds two integers and returns the sum.
Args:
a (int): First integer
b (int): Second integer
Returns:
int: Sum of a and b
"""
return a + b
@tool
def subtract(a: int | float, b: int | float) -> int | float:
"""
Subtracts the second integer from the first and returns the difference.
Args:
a (int): First integer (minuend)
b (int): Second integer (subtrahend)
Returns:
int: Difference of a and b
"""
return a - b
@tool
def divide(a: int | float, b: int | float) -> int | float:
"""
Divides the first integer by the second and returns the quotient.
Args:
a (int): Dividend
b (int): Divisor
Returns:
float: Quotient of a divided by b
Raises:
ValueError: If b is zero
"""
if b == 0 or b==0.0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int | float, b: int | float) -> int | float:
"""
Returns the remainder when dividing the first integer by the second.
Args:
a (int): Dividend
b (int): Divisor
Returns:
int: Remainder of a divided by b
"""
return a % b
@tool
def optimized_web_search(query: str) -> str:
"""
Performs an optimized web search using TavilySearchResults.
Args:
query (str): Search query string
Returns:
str: Concatenated search results with URLs and content snippets
"""
try:
time.sleep(random.uniform(0.7, 1.5))
docs = TavilySearchResults(max_results=3).invoke(query=query)
return "\n\n---\n\n".join(
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:800]}</Doc>"
for d in docs
)
except Exception as e:
return f"Web search failed: {e}"
@tool
def optimized_wiki_search(query: str) -> str:
"""
Performs an optimized Wikipedia search and returns content snippets.
Args:
query (str): Wikipedia search query
Returns:
str: Wikipedia content with source attribution
"""
try:
time.sleep(random.uniform(0.3, 1))
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n---\n\n".join(
f"<Doc src='{d.metadata.get('source','Wikipedia')}'>{d.page_content[:1000]}</Doc>"
for d in docs
)
except Exception as e:
return f"Wikipedia search failed: {e}"
# ---- LLM Provider Integrations ----
try:
from langchain_nvidia_ai_endpoints import ChatNVIDIA
NVIDIA_AVAILABLE = True
except ImportError:
NVIDIA_AVAILABLE = False
try:
import google.generativeai as genai
from langchain_google_genai import ChatGoogleGenerativeAI
GOOGLE_AVAILABLE = True
except ImportError:
GOOGLE_AVAILABLE = False
# ---- Enhanced Agent State ----
class EnhancedAgentState(TypedDict):
"""
State structure for the enhanced multi-LLM agent system.
Attributes:
messages: List of conversation messages
query: Current query string
agent_type: Selected agent/LLM type
final_answer: Generated response
perf: Performance metrics
agno_resp: Agno-style response metadata
tools_used: List of tools used in processing
reasoning: Step-by-step reasoning process
"""
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
query: str
agent_type: str
final_answer: str
perf: Dict[str, Any]
agno_resp: str
tools_used: List[str]
reasoning: str
# ---- Enhanced Multi-LLM System ----
class EnhancedQuestionAnsweringSystem:
"""
Advanced question-answering system that routes queries to appropriate LLM providers
and uses tools to gather information for comprehensive answers.
Features:
- Multi-LLM routing (Groq, Google, NVIDIA)
- Tool integration for web search and calculations
- Structured reasoning and answer formatting
- Performance monitoring
"""
def __init__(self):
"""Initialize the enhanced question-answering system."""
self.tools = [
multiply, add, subtract, divide, modulus,
optimized_web_search, optimized_wiki_search
]
self.graph = self._build_graph()
def _llm(self, model_name: str) -> ChatGroq:
"""
Create a Groq LLM instance.
Args:
model_name (str): Model identifier
Returns:
ChatGroq: Configured Groq LLM instance
"""
return ChatGroq(
model=model_name,
temperature=0,
api_key=os.getenv("GROQ_API_KEY")
)
def _build_graph(self) -> StateGraph:
"""
Build the LangGraph state machine with enhanced question-answering capabilities.
Returns:
StateGraph: Compiled graph with routing logic
"""
# Initialize LLMs
llama8_llm = self._llm("llama3-8b-8192")
llama70_llm = self._llm("llama3-70b-8192")
deepseek_llm = self._llm("deepseek-chat")
def router(st: EnhancedAgentState) -> EnhancedAgentState:
"""
Route queries to appropriate LLM based on complexity and content.
Args:
st (EnhancedAgentState): Current state
Returns:
EnhancedAgentState: Updated state with agent selection
"""
q = st["query"].lower()
# Route based on query characteristics
if any(keyword in q for keyword in ["calculate", "compute", "math", "number"]):
t = "llama70" # Use more powerful model for calculations
elif any(keyword in q for keyword in ["search", "find", "lookup", "wikipedia"]):
t = "search_enhanced" # Use search-enhanced processing
elif "deepseek" in q or any(keyword in q for keyword in ["analyze", "reasoning", "complex"]):
t = "deepseek"
elif len(q.split()) > 20: # Complex queries
t = "llama70"
else:
t = "llama8" # Default for simple queries
return {**st, "agent_type": t, "tools_used": [], "reasoning": ""}
def llama8_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Process query with Llama-3 8B model."""
t0 = time.time()
try:
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
res = llama8_llm.invoke([sys, HumanMessage(content=st["query"])])
reasoning = "Used Llama-3 8B for efficient processing of straightforward query."
return {**st,
"final_answer": res.content,
"reasoning": reasoning,
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-8B"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
def llama70_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Process query with Llama-3 70B model."""
t0 = time.time()
try:
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
res = llama70_llm.invoke([sys, HumanMessage(content=st["query"])])
reasoning = "Used Llama-3 70B for complex reasoning and detailed analysis."
return {**st,
"final_answer": res.content,
"reasoning": reasoning,
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-70B"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Process query with DeepSeek model."""
t0 = time.time()
try:
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
res = deepseek_llm.invoke([sys, HumanMessage(content=st["query"])])
reasoning = "Used DeepSeek for advanced reasoning and analytical tasks."
return {**st,
"final_answer": res.content,
"reasoning": reasoning,
"perf": {"time": time.time() - t0, "prov": "Groq-DeepSeek"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
def search_enhanced_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Process query with search enhancement."""
t0 = time.time()
tools_used = []
reasoning_steps = []
try:
# Determine if we need web search or Wikipedia
query = st["query"]
search_results = ""
if any(keyword in query.lower() for keyword in ["wikipedia", "wiki"]):
search_results = optimized_wiki_search.invoke({"query": query})
tools_used.append("wikipedia_search")
reasoning_steps.append("Searched Wikipedia for relevant information")
else:
search_results = optimized_web_search.invoke({"query": query})
tools_used.append("web_search")
reasoning_steps.append("Performed web search for current information")
# Enhance query with search results
enhanced_query = f"""
Original Query: {query}
Search Results:
{search_results}
Based on the search results above, please provide a comprehensive answer to the original query.
"""
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
reasoning_steps.append("Used Llama-3 70B to analyze search results and generate comprehensive answer")
reasoning = " -> ".join(reasoning_steps)
return {**st,
"final_answer": res.content,
"tools_used": tools_used,
"reasoning": reasoning,
"perf": {"time": time.time() - t0, "prov": "Search-Enhanced-Llama70"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
# Build graph
g = StateGraph(EnhancedAgentState)
g.add_node("router", router)
g.add_node("llama8", llama8_node)
g.add_node("llama70", llama70_node)
g.add_node("deepseek", deepseek_node)
g.add_node("search_enhanced", search_enhanced_node)
g.set_entry_point("router")
g.add_conditional_edges("router", lambda s: s["agent_type"], {
"llama8": "llama8",
"llama70": "llama70",
"deepseek": "deepseek",
"search_enhanced": "search_enhanced"
})
for node in ["llama8", "llama70", "deepseek", "search_enhanced"]:
g.add_edge(node, END)
return g.compile(checkpointer=MemorySaver())
def process_query(self, q: str) -> str:
"""
Process a query through the enhanced question-answering system.
Args:
q (str): Input query
Returns:
str: Generated response with proper formatting
"""
state = {
"messages": [HumanMessage(content=q)],
"query": q,
"agent_type": "",
"final_answer": "",
"perf": {},
"agno_resp": "",
"tools_used": [],
"reasoning": ""
}
cfg = {"configurable": {"thread_id": f"qa_{hash(q)}"}}
try:
out = self.graph.invoke(state, cfg)
answer = out.get("final_answer", "").strip()
# Ensure proper formatting
if not answer.startswith("FINAL ANSWER:"):
# Extract the actual answer if it's buried in explanation
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
answer = f"FINAL ANSWER: {answer}"
else:
# Add FINAL ANSWER prefix if missing
answer = f"FINAL ANSWER: {answer}"
return answer
except Exception as e:
return f"FINAL ANSWER: Error processing query: {e}"
def build_graph(provider: str | None = None) -> StateGraph:
"""
Build and return the graph for the enhanced question-answering system.
Args:
provider (str | None): Provider preference (optional)
Returns:
StateGraph: Compiled graph instance
"""
return EnhancedQuestionAnsweringSystem().graph
# ---- Main Question-Answering Interface ----
class QuestionAnsweringAgent:
"""
Main interface for the question-answering agent system.
"""
def __init__(self):
"""Initialize the question-answering agent."""
self.system = EnhancedQuestionAnsweringSystem()
def answer_question(self, question: str) -> str:
"""
Answer a question using the enhanced multi-LLM system.
Args:
question (str): The question to answer
Returns:
str: Formatted answer with FINAL ANSWER prefix
"""
return self.system.process_query(question)
if __name__ == "__main__":
# Initialize the question-answering system
qa_agent = QuestionAnsweringAgent()
# Test with sample questions
test_questions = [
"How many studio albums were published by Mercedes Sosa between 2000 and 2009?",
"What is 25 multiplied by 17?",
"Find information about the capital of France on Wikipedia",
"What is the population of Tokyo according to recent data?"
]
print("=" * 80)
print("Enhanced Question-Answering Agent System")
print("=" * 80)
for i, question in enumerate(test_questions, 1):
print(f"\nQuestion {i}: {question}")
print("-" * 60)
answer = qa_agent.answer_question(question)
print(answer)
print()
|