File size: 16,614 Bytes
5092552
 
 
 
 
d4557ee
 
 
f4505e9
5092552
e292008
1fa6961
f4505e9
 
0c69489
e292008
0c69489
e292008
 
f4505e9
5092552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35ea13
5092552
f4505e9
5092552
 
 
 
 
 
 
 
 
 
 
f0e66e7
f4505e9
 
5092552
 
 
 
 
 
 
 
 
 
 
f0e66e7
1fa6961
f4505e9
5092552
 
 
 
 
 
 
 
 
 
 
f0e66e7
cc467c2
f4505e9
 
5092552
 
 
 
 
 
 
 
 
 
 
 
 
f4505e9
 
 
 
 
5092552
 
 
 
 
 
 
 
 
 
 
f0e66e7
a55679f
f4505e9
 
5092552
 
 
 
 
 
 
 
 
25c1140
e292008
5092552
a55679f
5092552
a55679f
 
25c1140
d4557ee
0f81d99
f4505e9
9a3d597
5092552
 
 
 
 
 
 
 
 
25c1140
e292008
5092552
a55679f
5092552
a55679f
 
25c1140
d4557ee
b1b6e20
5092552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a55679f
5092552
 
 
 
 
 
 
 
 
 
 
 
 
e292008
f4505e9
 
 
e292008
d4557ee
5092552
 
f4505e9
5092552
 
e292008
5092552
 
 
 
 
 
 
 
e292008
5092552
e292008
5092552
a55679f
 
 
 
d4557ee
a55679f
5092552
 
 
 
 
 
 
 
 
 
e292008
 
 
 
 
 
5092552
 
 
 
 
 
 
 
 
e292008
 
a55679f
 
5092552
 
 
 
 
 
 
 
 
a55679f
5092552
 
 
 
 
 
 
a35ea13
5092552
e292008
5092552
 
 
 
a55679f
e292008
5092552
0c69489
5092552
 
 
 
 
 
 
 
 
 
 
 
0c69489
e292008
5092552
0c69489
5092552
 
 
 
 
 
 
 
 
 
 
 
0c69489
e292008
5092552
0c69489
5092552
 
 
 
 
 
 
 
 
 
 
 
a55679f
5092552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c69489
 
e292008
 
0c69489
5092552
 
0ab2059
5092552
 
 
 
 
 
 
 
 
 
d4557ee
0f81d99
0c69489
5092552
 
 
 
 
 
 
 
 
0c69489
 
 
 
 
 
5092552
 
 
72c7dbb
5092552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35ea13
5092552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c69489
 
5092552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
"""
Enhanced Multi-LLM Agent System with Question-Answering Capabilities
Supports Groq (Llama-3 8B/70B, DeepSeek), Google Gemini, NVIDIA NIM, and Agno-style agents
"""

import os
import time
import random
import operator
from typing import List, Dict, Any, TypedDict, Annotated, Optional
from dotenv import load_dotenv

from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_groq import ChatGroq

# Load environment variables
load_dotenv()

# Enhanced system prompt for question-answering tasks
ENHANCED_SYSTEM_PROMPT = (
    "You are a helpful assistant tasked with answering questions using a set of tools. "
    "You must provide accurate, comprehensive answers based on available information. "
    "When answering questions, follow these guidelines:\n"
    "1. Use available tools to gather information when needed\n"
    "2. Provide precise, factual answers\n"
    "3. For numbers: don't use commas or units unless specified\n"
    "4. For strings: don't use articles or abbreviations, write digits in plain text\n"
    "5. For lists: apply above rules based on element type\n"
    "6. Always end with 'FINAL ANSWER: [YOUR ANSWER]'\n"
    "7. Be concise but thorough in your reasoning\n"
    "8. If you cannot find the answer, state that clearly"
)

# ---- Tool Definitions with Enhanced Docstrings ----
@tool
def multiply(a: int, b: int) -> int:
    """
    Multiplies two integers and returns the product.
    
    Args:
        a (int): First integer
        b (int): Second integer
        
    Returns:
        int: Product of a and b
    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """
    Adds two integers and returns the sum.
    
    Args:
        a (int): First integer
        b (int): Second integer
        
    Returns:
        int: Sum of a and b
    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """
    Subtracts the second integer from the first and returns the difference.
    
    Args:
        a (int): First integer (minuend)
        b (int): Second integer (subtrahend)
        
    Returns:
        int: Difference of a and b
    """
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """
    Divides the first integer by the second and returns the quotient.
    
    Args:
        a (int): Dividend
        b (int): Divisor
        
    Returns:
        float: Quotient of a divided by b
        
    Raises:
        ValueError: If b is zero
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """
    Returns the remainder when dividing the first integer by the second.
    
    Args:
        a (int): Dividend
        b (int): Divisor
        
    Returns:
        int: Remainder of a divided by b
    """
    return a % b

@tool
def optimized_web_search(query: str) -> str:
    """
    Performs an optimized web search using TavilySearchResults.
    
    Args:
        query (str): Search query string
        
    Returns:
        str: Concatenated search results with URLs and content snippets
    """
    try:
        time.sleep(random.uniform(0.7, 1.5))
        docs = TavilySearchResults(max_results=3).invoke(query=query)
        return "\n\n---\n\n".join(
            f"<Doc url='{d.get('url','')}'>{d.get('content','')[:800]}</Doc>"
            for d in docs
        )
    except Exception as e:
        return f"Web search failed: {e}"

@tool
def optimized_wiki_search(query: str) -> str:
    """
    Performs an optimized Wikipedia search and returns content snippets.
    
    Args:
        query (str): Wikipedia search query
        
    Returns:
        str: Wikipedia content with source attribution
    """
    try:
        time.sleep(random.uniform(0.3, 1))
        docs = WikipediaLoader(query=query, load_max_docs=2).load()
        return "\n\n---\n\n".join(
            f"<Doc src='{d.metadata.get('source','Wikipedia')}'>{d.page_content[:1000]}</Doc>"
            for d in docs
        )
    except Exception as e:
        return f"Wikipedia search failed: {e}"

# ---- LLM Provider Integrations ----
try:
    from langchain_nvidia_ai_endpoints import ChatNVIDIA
    NVIDIA_AVAILABLE = True
except ImportError:
    NVIDIA_AVAILABLE = False

try:
    import google.generativeai as genai
    from langchain_google_genai import ChatGoogleGenerativeAI
    GOOGLE_AVAILABLE = True
except ImportError:
    GOOGLE_AVAILABLE = False

# ---- Enhanced Agent State ----
class EnhancedAgentState(TypedDict):
    """
    State structure for the enhanced multi-LLM agent system.
    
    Attributes:
        messages: List of conversation messages
        query: Current query string
        agent_type: Selected agent/LLM type
        final_answer: Generated response
        perf: Performance metrics
        agno_resp: Agno-style response metadata
        tools_used: List of tools used in processing
        reasoning: Step-by-step reasoning process
    """
    messages: Annotated[List[HumanMessage | AIMessage], operator.add]
    query: str
    agent_type: str
    final_answer: str
    perf: Dict[str, Any]
    agno_resp: str
    tools_used: List[str]
    reasoning: str

# ---- Enhanced Multi-LLM System ----
class EnhancedQuestionAnsweringSystem:
    """
    Advanced question-answering system that routes queries to appropriate LLM providers
    and uses tools to gather information for comprehensive answers.
    
    Features:
    - Multi-LLM routing (Groq, Google, NVIDIA)
    - Tool integration for web search and calculations
    - Structured reasoning and answer formatting
    - Performance monitoring
    """
    
    def __init__(self):
        """Initialize the enhanced question-answering system."""
        self.tools = [
            multiply, add, subtract, divide, modulus,
            optimized_web_search, optimized_wiki_search
        ]
        self.graph = self._build_graph()

    def _llm(self, model_name: str) -> ChatGroq:
        """
        Create a Groq LLM instance.
        
        Args:
            model_name (str): Model identifier
            
        Returns:
            ChatGroq: Configured Groq LLM instance
        """
        return ChatGroq(
            model=model_name,
            temperature=0,
            api_key=os.getenv("GROQ_API_KEY")
        )

    def _build_graph(self) -> StateGraph:
        """
        Build the LangGraph state machine with enhanced question-answering capabilities.
        
        Returns:
            StateGraph: Compiled graph with routing logic
        """
        # Initialize LLMs
        llama8_llm = self._llm("llama3-8b-8192")
        llama70_llm = self._llm("llama3-70b-8192")
        deepseek_llm = self._llm("deepseek-chat")

        def router(st: EnhancedAgentState) -> EnhancedAgentState:
            """
            Route queries to appropriate LLM based on complexity and content.
            
            Args:
                st (EnhancedAgentState): Current state
                
            Returns:
                EnhancedAgentState: Updated state with agent selection
            """
            q = st["query"].lower()
            
            # Route based on query characteristics
            if any(keyword in q for keyword in ["calculate", "compute", "math", "number"]):
                t = "llama70"  # Use more powerful model for calculations
            elif any(keyword in q for keyword in ["search", "find", "lookup", "wikipedia"]):
                t = "search_enhanced"  # Use search-enhanced processing
            elif "deepseek" in q or any(keyword in q for keyword in ["analyze", "reasoning", "complex"]):
                t = "deepseek"
            elif len(q.split()) > 20:  # Complex queries
                t = "llama70"
            else:
                t = "llama8"  # Default for simple queries
                
            return {**st, "agent_type": t, "tools_used": [], "reasoning": ""}

        def llama8_node(st: EnhancedAgentState) -> EnhancedAgentState:
            """Process query with Llama-3 8B model."""
            t0 = time.time()
            try:
                sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
                res = llama8_llm.invoke([sys, HumanMessage(content=st["query"])])
                
                reasoning = "Used Llama-3 8B for efficient processing of straightforward query."
                
                return {**st,
                        "final_answer": res.content,
                        "reasoning": reasoning,
                        "perf": {"time": time.time() - t0, "prov": "Groq-Llama3-8B"}}
            except Exception as e:
                return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}

        def llama70_node(st: EnhancedAgentState) -> EnhancedAgentState:
            """Process query with Llama-3 70B model."""
            t0 = time.time()
            try:
                sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
                res = llama70_llm.invoke([sys, HumanMessage(content=st["query"])])
                
                reasoning = "Used Llama-3 70B for complex reasoning and detailed analysis."
                
                return {**st,
                        "final_answer": res.content,
                        "reasoning": reasoning,
                        "perf": {"time": time.time() - t0, "prov": "Groq-Llama3-70B"}}
            except Exception as e:
                return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}

        def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
            """Process query with DeepSeek model."""
            t0 = time.time()
            try:
                sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
                res = deepseek_llm.invoke([sys, HumanMessage(content=st["query"])])
                
                reasoning = "Used DeepSeek for advanced reasoning and analytical tasks."
                
                return {**st,
                        "final_answer": res.content,
                        "reasoning": reasoning,
                        "perf": {"time": time.time() - t0, "prov": "Groq-DeepSeek"}}
            except Exception as e:
                return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}

        def search_enhanced_node(st: EnhancedAgentState) -> EnhancedAgentState:
            """Process query with search enhancement."""
            t0 = time.time()
            tools_used = []
            reasoning_steps = []
            
            try:
                # Determine if we need web search or Wikipedia
                query = st["query"]
                search_results = ""
                
                if any(keyword in query.lower() for keyword in ["wikipedia", "wiki"]):
                    search_results = optimized_wiki_search.invoke({"query": query})
                    tools_used.append("wikipedia_search")
                    reasoning_steps.append("Searched Wikipedia for relevant information")
                else:
                    search_results = optimized_web_search.invoke({"query": query})
                    tools_used.append("web_search")
                    reasoning_steps.append("Performed web search for current information")
                
                # Enhance query with search results
                enhanced_query = f"""
                Original Query: {query}
                
                Search Results:
                {search_results}
                
                Based on the search results above, please provide a comprehensive answer to the original query.
                """
                
                sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
                res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
                
                reasoning_steps.append("Used Llama-3 70B to analyze search results and generate comprehensive answer")
                reasoning = " -> ".join(reasoning_steps)
                
                return {**st,
                        "final_answer": res.content,
                        "tools_used": tools_used,
                        "reasoning": reasoning,
                        "perf": {"time": time.time() - t0, "prov": "Search-Enhanced-Llama70"}}
            except Exception as e:
                return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}

        # Build graph
        g = StateGraph(EnhancedAgentState)
        g.add_node("router", router)
        g.add_node("llama8", llama8_node)
        g.add_node("llama70", llama70_node)
        g.add_node("deepseek", deepseek_node)
        g.add_node("search_enhanced", search_enhanced_node)
        
        g.set_entry_point("router")
        g.add_conditional_edges("router", lambda s: s["agent_type"], {
            "llama8": "llama8",
            "llama70": "llama70",
            "deepseek": "deepseek",
            "search_enhanced": "search_enhanced"
        })
        
        for node in ["llama8", "llama70", "deepseek", "search_enhanced"]:
            g.add_edge(node, END)
            
        return g.compile(checkpointer=MemorySaver())

    def process_query(self, q: str) -> str:
        """
        Process a query through the enhanced question-answering system.
        
        Args:
            q (str): Input query
            
        Returns:
            str: Generated response with proper formatting
        """
        state = {
            "messages": [HumanMessage(content=q)],
            "query": q,
            "agent_type": "",
            "final_answer": "",
            "perf": {},
            "agno_resp": "",
            "tools_used": [],
            "reasoning": ""
        }
        cfg = {"configurable": {"thread_id": f"qa_{hash(q)}"}}
        
        try:
            out = self.graph.invoke(state, cfg)
            answer = out.get("final_answer", "").strip()
            
            # Ensure proper formatting
            if not answer.startswith("FINAL ANSWER:"):
                # Extract the actual answer if it's buried in explanation
                if "FINAL ANSWER:" in answer:
                    answer = answer.split("FINAL ANSWER:")[-1].strip()
                    answer = f"FINAL ANSWER: {answer}"
                else:
                    # Add FINAL ANSWER prefix if missing
                    answer = f"FINAL ANSWER: {answer}"
            
            return answer
        except Exception as e:
            return f"FINAL ANSWER: Error processing query: {e}"

def build_graph(provider: str | None = None) -> StateGraph:
    """
    Build and return the graph for the enhanced question-answering system.
    
    Args:
        provider (str | None): Provider preference (optional)
        
    Returns:
        StateGraph: Compiled graph instance
    """
    return EnhancedQuestionAnsweringSystem().graph

# ---- Main Question-Answering Interface ----
class QuestionAnsweringAgent:
    """
    Main interface for the question-answering agent system.
    """
    
    def __init__(self):
        """Initialize the question-answering agent."""
        self.system = EnhancedQuestionAnsweringSystem()
        
    def answer_question(self, question: str) -> str:
        """
        Answer a question using the enhanced multi-LLM system.
        
        Args:
            question (str): The question to answer
            
        Returns:
            str: Formatted answer with FINAL ANSWER prefix
        """
        return self.system.process_query(question)

if __name__ == "__main__":
    # Initialize the question-answering system
    qa_agent = QuestionAnsweringAgent()
    
    # Test with sample questions
    test_questions = [
        "How many studio albums were published by Mercedes Sosa between 2000 and 2009?",
        "What is 25 multiplied by 17?",
        "Find information about the capital of France on Wikipedia",
        "What is the population of Tokyo according to recent data?"
    ]
    
    print("=" * 80)
    print("Enhanced Question-Answering Agent System")
    print("=" * 80)
    
    for i, question in enumerate(test_questions, 1):
        print(f"\nQuestion {i}: {question}")
        print("-" * 60)
        answer = qa_agent.answer_question(question)
        print(answer)
        print()