File size: 24,260 Bytes
5092552
58a708e
 
5092552
 
d4557ee
 
 
ca98093
41f9740
 
58a708e
 
1fa6961
58a708e
41f9740
58a708e
41f9740
 
a35ea13
58a708e
4efaf9c
58a708e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4efaf9c
58a708e
 
4efaf9c
 
41f9740
 
 
 
ca98093
41f9740
ca98093
58a708e
 
 
 
f4505e9
58a708e
 
 
 
 
1fa6961
58a708e
 
 
 
 
 
 
 
 
 
cc467c2
58a708e
 
 
ca98093
41f9740
4efaf9c
58a708e
4efaf9c
58a708e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f9740
58a708e
4efaf9c
 
58a708e
 
 
 
 
4efaf9c
 
41f9740
58a708e
41f9740
58a708e
 
 
 
 
 
 
 
41f9740
58a708e
4efaf9c
58a708e
 
4efaf9c
58a708e
 
 
 
 
4efaf9c
58a708e
4efaf9c
58a708e
 
 
 
 
 
 
 
 
 
41f9740
58a708e
 
 
 
41f9740
58a708e
 
 
4efaf9c
 
 
 
 
 
 
 
 
 
 
 
58a708e
 
4efaf9c
 
 
 
 
58a708e
4efaf9c
 
 
 
 
58a708e
 
 
 
 
 
 
4efaf9c
 
 
 
 
 
 
0c69489
58a708e
 
 
41f9740
4efaf9c
58a708e
 
 
4efaf9c
58a708e
 
 
 
 
4efaf9c
58a708e
 
 
 
 
 
 
 
 
 
41f9740
58a708e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f9740
58a708e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5092552
58a708e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f9740
58a708e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f9740
58a708e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5092552
58a708e
4efaf9c
58a708e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f9740
58a708e
 
 
 
 
 
 
 
 
 
 
 
 
41f9740
58a708e
 
41f9740
58a708e
 
 
41f9740
58a708e
41f9740
58a708e
41f9740
4efaf9c
58a708e
 
 
 
 
 
 
 
 
 
4efaf9c
 
58a708e
 
 
4efaf9c
58a708e
4efaf9c
5092552
58a708e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4efaf9c
58a708e
 
 
 
0c69489
4efaf9c
41f9740
58a708e
 
41f9740
4efaf9c
 
58a708e
 
 
 
 
 
 
 
5092552
41f9740
5092552
58a708e
 
 
 
 
5092552
 
4efaf9c
58a708e
4efaf9c
 
 
 
 
41f9740
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
"""
Enhanced Agno Multi-LLM Agent System with NVIDIA Integration
Uses open-source models + NVIDIA NIM models available through Agno framework
"""

import os
import time
import random
import operator
from typing import List, Dict, Any, TypedDict, Annotated, Optional
from dotenv import load_dotenv
from datetime import datetime
from textwrap import dedent

# Core LangChain imports for compatibility
from langchain_core.tools import tool
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver

# Agno imports for open-source models + NVIDIA
try:
    from agno.agent import Agent
    from agno.models.groq import Groq
    from agno.models.ollama import Ollama
    from agno.models.together import Together
    from agno.models.anyscale import Anyscale
    from agno.models.huggingface import HuggingFaceChat
    from agno.models.nvidia import Nvidia  # NVIDIA NIM integration
    from agno.tools.duckduckgo import DuckDuckGoTools
    from agno.tools.wikipedia import WikipediaTools
    from agno.tools.calculator import Calculator
    from agno.tools.reasoning import ReasoningTools
    from agno.memory import AgentMemory
    from agno.storage import AgentStorage
    from agno.knowledge import AgentKnowledge
    AGNO_AVAILABLE = True
except ImportError:
    AGNO_AVAILABLE = False
    print("Agno not available. Install with: pip install agno")

# Vector database imports
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
import json

load_dotenv()

# Enhanced system prompt for Agno agents
AGNO_SYSTEM_PROMPT = dedent("""\
You are a helpful assistant tasked with answering questions using available tools.
You must provide accurate, comprehensive answers based on available information.

Your capabilities include:
- Using search tools to find current information
- Performing mathematical calculations
- Reasoning through complex problems step by step
- Accessing Wikipedia for encyclopedic knowledge

Guidelines:
1. Use available tools to gather information when needed
2. Provide precise, factual answers
3. For numbers: don't use commas or units unless specified
4. For strings: don't use articles or abbreviations, write digits in plain text
5. For lists: apply above rules based on element type
6. Always end with 'FINAL ANSWER: [YOUR ANSWER]'
7. Be concise but thorough in your reasoning
8. If you cannot find the answer, state that clearly
""")

# ---- Enhanced Model Manager with NVIDIA Support ----
class AgnoEnhancedModelManager:
    """Manages open-source models + NVIDIA NIM models available through Agno"""
    
    def __init__(self):
        self.available_models = {}
        self._initialize_all_models()
    
    def _initialize_all_models(self):
        """Initialize open-source models + NVIDIA NIM models through Agno"""
        if not AGNO_AVAILABLE:
            return
        
        # 1. NVIDIA NIM Models (Enterprise-grade open-source models)
        if os.getenv("NVIDIA_API_KEY"):
            try:
                # NVIDIA NIM provides access to optimized open-source models
                self.available_models['nvidia_llama3_70b'] = Nvidia(id="meta/llama3-70b-instruct")
                self.available_models['nvidia_llama3_8b'] = Nvidia(id="meta/llama3-8b-instruct")
                self.available_models['nvidia_mixtral'] = Nvidia(id="mistralai/mixtral-8x7b-instruct-v0.1")
                self.available_models['nvidia_codellama'] = Nvidia(id="meta/codellama-70b-instruct")
                self.available_models['nvidia_gemma'] = Nvidia(id="google/gemma-7b-it")
                self.available_models['nvidia_yi'] = Nvidia(id="01-ai/yi-34b-chat")
                print("NVIDIA NIM models initialized")
            except Exception as e:
                print(f"NVIDIA models not available: {e}")
        
        # 2. Groq (Free tier with open-source models)
        if os.getenv("GROQ_API_KEY"):
            try:
                self.available_models['groq_llama3_70b'] = Groq(id="llama3-70b-8192")
                self.available_models['groq_llama3_8b'] = Groq(id="llama3-8b-8192")
                self.available_models['groq_mixtral'] = Groq(id="mixtral-8x7b-32768")
                self.available_models['groq_gemma'] = Groq(id="gemma-7b-it")
                print("Groq open-source models initialized")
            except Exception as e:
                print(f"Groq models not available: {e}")
        
        # 3. Ollama (Completely free local models)
        try:
            self.available_models['ollama_llama3'] = Ollama(id="llama3")
            self.available_models['ollama_llama3_70b'] = Ollama(id="llama3:70b")
            self.available_models['ollama_mistral'] = Ollama(id="mistral")
            self.available_models['ollama_phi3'] = Ollama(id="phi3")
            self.available_models['ollama_codellama'] = Ollama(id="codellama")
            self.available_models['ollama_gemma'] = Ollama(id="gemma")
            self.available_models['ollama_qwen'] = Ollama(id="qwen")
            print("Ollama local models initialized")
        except Exception as e:
            print(f"Ollama models not available: {e}")
        
        # 4. Together AI (Open-source models)
        if os.getenv("TOGETHER_API_KEY"):
            try:
                self.available_models['together_llama3_70b'] = Together(id="meta-llama/Llama-3-70b-chat-hf")
                self.available_models['together_llama3_8b'] = Together(id="meta-llama/Llama-3-8b-chat-hf")
                self.available_models['together_mistral'] = Together(id="mistralai/Mistral-7B-Instruct-v0.1")
                self.available_models['together_qwen'] = Together(id="Qwen/Qwen2-72B-Instruct")
                print("Together AI open-source models initialized")
            except Exception as e:
                print(f"Together AI models not available: {e}")
        
        # 5. Anyscale (Open-source models)
        if os.getenv("ANYSCALE_API_KEY"):
            try:
                self.available_models['anyscale_llama3_70b'] = Anyscale(id="meta-llama/Llama-3-70b-chat-hf")
                self.available_models['anyscale_mistral'] = Anyscale(id="mistralai/Mistral-7B-Instruct-v0.1")
                print("Anyscale open-source models initialized")
            except Exception as e:
                print(f"Anyscale models not available: {e}")
        
        # 6. Hugging Face (Open-source models)
        try:
            if os.getenv("HUGGINGFACE_API_KEY"):
                self.available_models['hf_llama3_8b'] = HuggingFaceChat(id="meta-llama/Meta-Llama-3-8B-Instruct")
                self.available_models['hf_mistral'] = HuggingFaceChat(id="mistralai/Mistral-7B-Instruct-v0.1")
                print("Hugging Face open-source models initialized")
        except Exception as e:
            print(f"Hugging Face models not available: {e}")
        
        print(f"Total available models: {len(self.available_models)}")
    
    def get_model(self, model_name: str):
        """Get a specific model by name"""
        return self.available_models.get(model_name)
    
    def list_available_models(self) -> List[str]:
        """List all available model names"""
        return list(self.available_models.keys())
    
    def get_best_model_for_task(self, task_type: str):
        """Get the best available model for a specific task type"""
        if task_type == "reasoning":
            # Prefer larger, more capable models for reasoning
            for model_name in ['nvidia_llama3_70b', 'groq_llama3_70b', 'together_llama3_70b', 'anyscale_llama3_70b', 'ollama_llama3_70b']:
                if model_name in self.available_models:
                    return self.available_models[model_name]
        
        elif task_type == "coding":
            # Prefer code-specialized models
            for model_name in ['nvidia_codellama', 'ollama_codellama', 'nvidia_llama3_70b', 'groq_llama3_70b']:
                if model_name in self.available_models:
                    return self.available_models[model_name]
        
        elif task_type == "fast":
            # Prefer fast, smaller models
            for model_name in ['groq_llama3_8b', 'nvidia_llama3_8b', 'groq_gemma', 'ollama_phi3', 'hf_llama3_8b']:
                if model_name in self.available_models:
                    return self.available_models[model_name]
        
        elif task_type == "enterprise":
            # Prefer NVIDIA NIM for enterprise-grade tasks
            for model_name in ['nvidia_llama3_70b', 'nvidia_mixtral', 'nvidia_codellama']:
                if model_name in self.available_models:
                    return self.available_models[model_name]
        
        # Default fallback to first available
        if self.available_models:
            return list(self.available_models.values())[0]
        return None

# ---- Enhanced Specialized Agno Agents with NVIDIA ----
class AgnoEnhancedAgentSystem:
    """System of specialized Agno agents using open-source + NVIDIA models"""
    
    def __init__(self):
        self.model_manager = AgnoEnhancedModelManager()
        self.agents = {}
        self._create_specialized_agents()
    
    def _create_specialized_agents(self):
        """Create specialized agents for different tasks using best available models"""
        if not AGNO_AVAILABLE:
            print("Agno not available, agents cannot be created")
            return
        
        # Enterprise Research Agent (NVIDIA preferred)
        enterprise_model = self.model_manager.get_best_model_for_task("enterprise")
        if enterprise_model:
            self.agents['enterprise_research'] = Agent(
                model=enterprise_model,
                tools=[DuckDuckGoTools(), WikipediaTools(), ReasoningTools()],
                description=dedent("""\
                You are an enterprise-grade research specialist with access to optimized models.
                Your expertise lies in comprehensive analysis, fact-checking, and providing
                detailed, accurate responses for complex research tasks.
                
                Your approach is:
                - Enterprise-level accuracy and reliability
                - Comprehensive and thorough analysis
                - Multi-source verification
                - Professional-grade output quality
                """),
                instructions=dedent("""\
                1. Use advanced reasoning capabilities for complex analysis
                2. Cross-reference multiple sources for maximum accuracy
                3. Provide comprehensive, well-structured responses
                4. Include confidence levels and source reliability assessment
                5. Always end with 'FINAL ANSWER: [your comprehensive answer]'
                6. Prioritize accuracy and completeness over speed
                """),
                memory=AgentMemory(),
                markdown=True,
                show_tool_calls=True,
                add_datetime_to_instructions=True
            )
        
        # Advanced Math Agent (Best reasoning model)
        math_model = self.model_manager.get_best_model_for_task("reasoning")
        if math_model:
            self.agents['advanced_math'] = Agent(
                model=math_model,
                tools=[Calculator(), ReasoningTools()],
                description=dedent("""\
                You are an advanced mathematics expert with access to powerful reasoning models.
                You excel at complex mathematical problem solving, statistical analysis,
                and providing step-by-step solutions with high accuracy.
                
                Your approach is:
                - Rigorous mathematical methodology
                - Step-by-step problem decomposition
                - High-precision calculations
                - Clear mathematical communication
                """),
                instructions=dedent("""\
                1. Break down complex mathematical problems systematically
                2. Use advanced reasoning for multi-step problems
                3. Show detailed work and methodology
                4. Verify calculations using multiple approaches when possible
                5. Provide exact numerical answers without commas or units unless specified
                6. Always end with 'FINAL ANSWER: [precise numerical result]'
                """),
                memory=AgentMemory(),
                markdown=True,
                show_tool_calls=True
            )
        
        # Fast Response Agent (Optimized for speed)
        fast_model = self.model_manager.get_best_model_for_task("fast")
        if fast_model:
            self.agents['fast_response'] = Agent(
                model=fast_model,
                tools=[DuckDuckGoTools(), WikipediaTools()],
                description=dedent("""\
                You are a rapid response specialist optimized for quick, accurate answers.
                You provide concise, direct responses while maintaining high quality standards.
                
                Your approach is:
                - Speed-optimized processing
                - Direct and concise communication
                - Efficient tool usage
                - Quality maintained at high speed
                """),
                instructions=dedent("""\
                1. Provide quick, accurate answers
                2. Use tools efficiently - only when necessary
                3. Be direct and avoid unnecessary elaboration
                4. Maintain accuracy despite speed focus
                5. Always end with 'FINAL ANSWER: [your concise answer]'
                6. Prioritize clarity and correctness
                """),
                markdown=True,
                show_tool_calls=False
            )
        
        # Advanced Coding Agent (Code-specialized model)
        coding_model = self.model_manager.get_best_model_for_task("coding")
        if coding_model:
            self.agents['advanced_coding'] = Agent(
                model=coding_model,
                tools=[ReasoningTools()],
                description=dedent("""\
                You are an advanced programming expert with access to code-specialized models.
                You excel at complex code generation, algorithm design, debugging, and
                software architecture recommendations.
                
                Your approach is:
                - Advanced programming methodologies
                - Clean, efficient code generation
                - Comprehensive error handling
                - Best practices implementation
                """),
                instructions=dedent("""\
                1. Write production-quality, well-documented code
                2. Follow industry best practices and design patterns
                3. Include comprehensive error handling and edge cases
                4. Provide clear explanations of code logic
                5. Consider performance, security, and maintainability
                6. Always end with 'FINAL ANSWER: [your code solution]'
                """),
                memory=AgentMemory(),
                markdown=True,
                show_tool_calls=True
            )
        
        # Standard Research Agent (Fallback)
        research_model = self.model_manager.get_best_model_for_task("reasoning")
        if research_model and 'enterprise_research' not in self.agents:
            self.agents['research'] = Agent(
                model=research_model,
                tools=[DuckDuckGoTools(), WikipediaTools(), ReasoningTools()],
                description=dedent("""\
                You are a research specialist with expertise in finding and analyzing information.
                Your specialty lies in gathering comprehensive data from multiple sources.
                """),
                instructions=dedent("""\
                1. Use search tools to find current and relevant information
                2. Apply systematic reasoning to analyze findings
                3. Provide comprehensive answers with sources
                4. Always end with 'FINAL ANSWER: [your answer]'
                """),
                memory=AgentMemory(),
                markdown=True,
                show_tool_calls=True
            )
        
        print(f"Created {len(self.agents)} specialized Agno agents with enhanced models")
    
    def route_query(self, query: str) -> str:
        """Route query to the most appropriate agent"""
        q_lower = query.lower()
        
        # Route to specialized agents
        if any(keyword in q_lower for keyword in ["calculate", "math", "multiply", "add", "subtract", "divide", "compute", "statistical"]):
            if 'advanced_math' in self.agents:
                return self._query_agent('advanced_math', query)
            elif 'math' in self.agents:
                return self._query_agent('math', query)
        
        elif any(keyword in q_lower for keyword in ["code", "programming", "function", "algorithm", "python", "javascript", "debug"]):
            if 'advanced_coding' in self.agents:
                return self._query_agent('advanced_coding', query)
            elif 'coding' in self.agents:
                return self._query_agent('coding', query)
        
        elif any(keyword in q_lower for keyword in ["enterprise", "analysis", "comprehensive", "detailed", "professional"]):
            if 'enterprise_research' in self.agents:
                return self._query_agent('enterprise_research', query)
        
        elif any(keyword in q_lower for keyword in ["research", "find", "search", "information", "study", "analyze"]):
            if 'enterprise_research' in self.agents:
                return self._query_agent('enterprise_research', query)
            elif 'research' in self.agents:
                return self._query_agent('research', query)
        
        elif len(query.split()) < 10:  # Simple queries
            if 'fast_response' in self.agents:
                return self._query_agent('fast_response', query)
            elif 'fast' in self.agents:
                return self._query_agent('fast', query)
        
        # Default to best available agent
        if 'enterprise_research' in self.agents:
            return self._query_agent('enterprise_research', query)
        elif 'research' in self.agents:
            return self._query_agent('research', query)
        elif self.agents:
            agent_name = list(self.agents.keys())[0]
            return self._query_agent(agent_name, query)
        
        return "No agents available"
    
    def _query_agent(self, agent_name: str, query: str) -> str:
        """Query a specific agent"""
        try:
            agent = self.agents[agent_name]
            response = agent.run(query)
            
            # Extract final answer if present
            if "FINAL ANSWER:" in response:
                return response.split("FINAL ANSWER:")[-1].strip()
            
            return response.strip()
        except Exception as e:
            return f"Error with {agent_name} agent: {e}"
    
    def get_system_info(self) -> Dict[str, Any]:
        """Get information about available agents and models"""
        model_breakdown = {
            "nvidia_models": [m for m in self.model_manager.list_available_models() if m.startswith("nvidia_")],
            "groq_models": [m for m in self.model_manager.list_available_models() if m.startswith("groq_")],
            "ollama_models": [m for m in self.model_manager.list_available_models() if m.startswith("ollama_")],
            "together_models": [m for m in self.model_manager.list_available_models() if m.startswith("together_")],
            "anyscale_models": [m for m in self.model_manager.list_available_models() if m.startswith("anyscale_")],
            "hf_models": [m for m in self.model_manager.list_available_models() if m.startswith("hf_")]
        }
        
        return {
            "available_models": self.model_manager.list_available_models(),
            "model_breakdown": model_breakdown,
            "active_agents": list(self.agents.keys()),
            "agno_available": AGNO_AVAILABLE,
            "total_models": len(self.model_manager.available_models),
            "nvidia_available": len(model_breakdown["nvidia_models"]) > 0
        }

# ---- Enhanced Agent State for LangGraph compatibility ----
class EnhancedAgentState(TypedDict):
    """State structure for compatibility with existing system."""
    messages: Annotated[List[HumanMessage | AIMessage], operator.add]
    query: str
    agent_type: str
    final_answer: str
    perf: Dict[str, Any]
    tools_used: List[str]
    reasoning: str
    model_used: str

# ---- Unified System with Enhanced NVIDIA Integration ----
class UnifiedAgnoEnhancedSystem:
    """Unified system that integrates Agno agents with NVIDIA + open-source models"""
    
    def __init__(self):
        if AGNO_AVAILABLE:
            print("Using enhanced Agno-based system with NVIDIA + open-source models")
            self.agno_system = AgnoEnhancedAgentSystem()
            self.graph = self._build_compatibility_graph()
        else:
            print("Agno not available")
            self.agno_system = None
            self.graph = None
    
    def _build_compatibility_graph(self):
        """Build LangGraph for compatibility with existing app.py"""
        def process_node(state: EnhancedAgentState) -> EnhancedAgentState:
            """Process query through enhanced Agno system"""
            query = state.get("query", "")
            
            if self.agno_system:
                answer = self.agno_system.route_query(query)
                return {**state, "final_answer": answer}
            else:
                return {**state, "final_answer": "Enhanced Agno system not available"}
        
        g = StateGraph(EnhancedAgentState)
        g.add_node("process", process_node)
        g.set_entry_point("process")
        g.add_edge("process", END)
        
        return g.compile(checkpointer=MemorySaver())
    
    def process_query(self, query: str) -> str:
        """Process query through the unified enhanced system"""
        if self.agno_system:
            return self.agno_system.route_query(query)
        else:
            return "Enhanced Agno system not available"
    
    def get_system_info(self) -> Dict[str, Any]:
        """Get information about the current enhanced system"""
        if self.agno_system:
            return self.agno_system.get_system_info()
        else:
            return {"system": "agno_unavailable", "agno_available": False}

# ---- Build Graph Function (for compatibility) ----
def build_graph(provider: str = "agno_enhanced"):
    """Build graph using enhanced Agno models including NVIDIA"""
    system = UnifiedAgnoEnhancedSystem()
    return system.graph if system.graph else None

# ---- Main execution ----
if __name__ == "__main__":
    # Initialize the enhanced unified system
    system = UnifiedAgnoEnhancedSystem()
    
    # Print system information
    info = system.get_system_info()
    print("Enhanced Agno System Information:")
    for key, value in info.items():
        if isinstance(value, dict):
            print(f"  {key}:")
            for subkey, subvalue in value.items():
                print(f"    {subkey}: {subvalue}")
        else:
            print(f"  {key}: {value}")
    
    # Test queries
    test_questions = [
        "Enterprise analysis: What is 25 multiplied by 17?",
        "Research the latest developments in quantum computing",
        "Write an advanced Python function to calculate factorial with error handling",
        "Find comprehensive information about Mercedes Sosa albums between 2000-2009",
        "Quick answer: What is the capital of France?"
    ]
    
    print("\n" + "="*60)
    print("Testing Enhanced Agno Multi-LLM System with NVIDIA")
    print("="*60)
    
    for i, question in enumerate(test_questions, 1):
        print(f"\nQuestion {i}: {question}")
        print("-" * 50)
        answer = system.process_query(question)
        print(f"Answer: {answer}")