File size: 40,087 Bytes
1193c1f
 
 
 
 
 
 
 
7370048
dd92890
7370048
3cf95b0
dfecac2
3cf95b0
f8873d7
3cf95b0
7370048
 
2f8da59
1297378
7370048
de3ef7d
a028cd7
 
7370048
d4c248d
7370048
 
 
 
 
 
 
 
 
 
1193c1f
14be288
f8873d7
7370048
 
 
 
f8873d7
7370048
 
 
 
 
 
 
 
 
 
 
3cf95b0
 
1193c1f
3cf95b0
7370048
1193c1f
d4c248d
7370048
1193c1f
 
3cf95b0
 
7370048
 
1193c1f
 
7370048
d4c248d
 
 
 
 
 
9c89976
1193c1f
 
7370048
1193c1f
 
 
d179217
 
 
1193c1f
 
 
 
 
d179217
7370048
1193c1f
 
b294f9c
 
 
 
 
 
 
 
 
 
 
 
9a46c55
b294f9c
 
 
 
 
 
 
 
 
 
 
 
9a46c55
b294f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a46c55
b294f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a46c55
b294f9c
 
a0f60c0
d179217
1193c1f
 
d179217
1193c1f
 
d179217
1193c1f
 
d179217
1193c1f
 
d179217
1193c1f
 
a0f60c0
1193c1f
 
a028cd7
 
 
 
1193c1f
 
a028cd7
 
 
 
7370048
1193c1f
d4c248d
7370048
d179217
 
 
d4c248d
7370048
 
bfe5a86
9370b00
d4c248d
bfe5a86
d4c248d
de3ef7d
d4c248d
de3ef7d
 
 
7370048
 
de3ef7d
b6b8274
b294f9c
3cf95b0
 
7370048
3cf95b0
de3ef7d
7370048
 
 
 
 
 
 
 
d4c248d
7370048
b6b8274
7370048
 
 
 
 
 
 
9370b00
dfecac2
7370048
 
 
bb1beb6
 
 
 
1193c1f
 
 
 
 
 
 
 
 
 
bb1beb6
1ab249a
bb1beb6
1ab249a
 
1193c1f
1ab249a
1193c1f
1ab249a
 
52dcd24
b294f9c
1ab249a
 
 
 
 
bb1beb6
 
1ab249a
bb1beb6
 
 
d4c248d
1193c1f
d4c248d
 
 
 
7370048
d4c248d
 
 
 
7370048
 
 
 
 
 
 
1193c1f
7370048
 
3cf95b0
7370048
 
 
 
 
 
 
3cf95b0
7370048
9370b00
b6b8274
7370048
 
 
de3ef7d
a0f60c0
de3ef7d
b6b8274
7370048
de3ef7d
7370048
de3ef7d
7370048
 
 
 
 
9dc7678
7370048
 
 
 
de3ef7d
7370048
1193c1f
7370048
 
 
 
 
b6b8274
7370048
 
 
 
 
d4c248d
 
 
7370048
 
d4c248d
 
 
1193c1f
d4c248d
7370048
 
 
 
de3ef7d
7370048
d4c248d
7370048
 
 
de3ef7d
7370048
9dc7678
7370048
 
9dc7678
7370048
 
 
d4c248d
 
7370048
 
1193c1f
d4c248d
7370048
 
a028cd7
 
 
 
1193c1f
a028cd7
 
 
 
 
 
 
1193c1f
a028cd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1193c1f
a028cd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1193c1f
a028cd7
 
 
 
 
 
 
 
 
 
 
1193c1f
 
 
a028cd7
1193c1f
 
a028cd7
d179217
a028cd7
 
 
 
 
 
 
 
 
d179217
1193c1f
a028cd7
 
 
 
 
 
 
d179217
1193c1f
a028cd7
 
 
 
 
 
 
 
 
d179217
a028cd7
 
 
1193c1f
 
 
a028cd7
1193c1f
 
 
 
a028cd7
 
 
496a1bb
d179217
a028cd7
1193c1f
a028cd7
 
 
 
d179217
a028cd7
 
d179217
a028cd7
 
 
52dcd24
a028cd7
d179217
a028cd7
 
 
 
9dc7678
7370048
 
 
1193c1f
7370048
 
a028cd7
7370048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9370b00
7370048
 
a028cd7
 
 
 
de3ef7d
7370048
 
 
efa51c3
 
 
a0f60c0
7370048
 
f8873d7
7370048
 
 
b6b8274
d4c248d
de3ef7d
7370048
 
 
a0f60c0
7370048
 
 
a0f60c0
 
 
 
 
 
 
7370048
 
b6b8274
d4c248d
de3ef7d
7370048
 
1193c1f
 
7370048
 
9a46c55
 
9dc7678
9a46c55
9dc7678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7370048
b6b8274
d4c248d
de3ef7d
7370048
b6b8274
 
 
d179217
1193c1f
 
 
 
 
 
b6b8274
 
 
 
 
 
 
 
 
de3ef7d
7370048
b6b8274
 
 
 
 
 
 
 
d179217
b6b8274
 
 
 
d179217
1193c1f
b6b8274
 
 
 
 
 
 
 
 
 
1193c1f
 
 
 
 
d179217
b6b8274
 
 
 
 
 
 
 
 
 
de3ef7d
7370048
f8873d7
 
9dc7678
f8873d7
7370048
d4c248d
 
 
de3ef7d
7370048
 
 
 
 
 
 
d179217
52dcd24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddd0e04
09a0b53
9dc7678
09a0b53
7370048
de3ef7d
d4c248d
de3ef7d
7370048
 
 
 
 
 
d4c248d
7370048
 
3cf95b0
7370048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c248d
 
7370048
 
 
 
 
 
a028cd7
 
 
 
 
 
 
 
7370048
 
d4c248d
9dc7678
a0f60c0
 
 
 
 
 
 
 
 
 
 
7370048
a0f60c0
7370048
a0f60c0
7370048
d4c248d
9dc7678
 
 
 
 
 
 
 
7370048
 
 
 
b6b8274
7370048
 
 
 
 
 
 
9370b00
7370048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c248d
7370048
 
 
 
 
 
 
 
de3ef7d
7370048
 
 
a028cd7
 
 
 
 
 
 
9dc7678
a028cd7
 
 
 
 
1193c1f
 
a028cd7
 
1193c1f
 
 
 
 
a028cd7
 
 
 
 
496a1bb
1193c1f
 
 
a028cd7
 
ddd0e04
 
496a1bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
"""
Enhanced NeuroResearch AI System
---------------------------------
This application integrates domain-adaptive multi-modal retrieval, ensemble cognitive processing,
and dynamic knowledge graph construction. It is designed for advanced technical research,
analysis, and reporting, employing triple-redundant API requests and a structured state workflow.
"""

import logging
import os
import re
import hashlib
import json
import time
import sys
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Dict, Any, Optional, Sequence

import chromadb
import requests
import streamlit as st
from PIL import Image
import torch

# LangChain and LangGraph imports
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from langchain.tools.retriever import create_retriever_tool

# Increase Python's recursion limit if needed
sys.setrecursionlimit(1000)

# ------------------------------
# Logging Configuration
# ------------------------------
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(message)s"
)
logger = logging.getLogger(__name__)

# ------------------------------
# State Schema Definition
# ------------------------------
class AgentState(TypedDict):
    messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
    context: Dict[str, Any]
    metadata: Dict[str, Any]

# ------------------------------
# Application Configuration
# ------------------------------
class ResearchConfig:
    # Environment & API configuration
    DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
    CHROMA_PATH = "chroma_db"
    
    # Document processing settings
    CHUNK_SIZE = 512
    CHUNK_OVERLAP = 64
    MAX_CONCURRENT_REQUESTS = 5
    EMBEDDING_DIMENSIONS = 1536
    
    # Mapping of documents to research topics
    DOCUMENT_MAP = {
        "Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%":
            "CV-Transformer Hybrid Architecture",
        "Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing":
            "Transformer Architecture Analysis",
        "Latest Trends in Machine Learning Methods Using Quantum Computing":
            "Quantum ML Frontiers"
    }
    
    # Template for detailed analysis using Markdown and LaTeX formatting
    ANALYSIS_TEMPLATE = (
        "Let's think step by step. Synthesize a comprehensive technical report based on the following documents. "
        "Focus on identifying the key innovations, empirical results, and potential limitations. Explicitly state any assumptions made during your analysis. "
        "The report MUST be valid Markdown, and all mathematical notation MUST be correctly formatted LaTeX (e.g., `E=mc^2`).\n\n"
        "Documents:\n{context}\n\n"
        "Respond with the following structure:\n"
        "# Technical Analysis Report\n\n"
        "1. **Key Technical Contributions:** (Bullet points highlighting the main innovations)\n"
        "2. **Novel Methodologies:** (Detailed explanation of the new methods used)\n"
        "3. **Empirical Results:** (Quantitative results with specific metrics, e.g., accuracy, precision, recall, F1-score. Include confidence intervals where appropriate.)\n"
        "4. **Potential Applications:** (Real-world applications of the technology)\n"
        "5. **Limitations and Future Directions:** (Current limitations and suggestions for future research)\n\n"
        "Format: Markdown with LaTeX mathematical notation where applicable."
    )
    
    # Domain-specific fallback analyses and prompts
    DOMAIN_FALLBACKS = {
        "biomedical research": """
# Biomedical Research Analysis
## Key Contributions
- Integration of clinical trial design with digital biomarkers.
- Multi-omics data used for precise patient stratification.
## Methodologies
- Machine learning for precision medicine.
- Federated learning for multi-center trials.
## Empirical Results
- Significant improvements in patient outcomes.
## Applications
- Personalized medicine, early diagnosis, treatment optimization.
""",
        "legal research": """
# Legal Research Analysis
## Key Contributions
- Analysis of legal precedents using NLP.
- Advanced case law retrieval and summarization.
## Methodologies
- Automated legal reasoning with transformer models.
- Sentiment analysis on judicial opinions.
## Empirical Results
- Improved accuracy in predicting case outcomes.
## Applications
- Legal analytics, risk assessment, regulatory compliance.
""",
        "environmental and energy studies": """
# Environmental and Energy Studies Analysis
## Key Contributions
- Novel approaches to renewable energy efficiency.
- Integration of policy analysis with technical metrics.
## Methodologies
- Simulation models for climate impact.
- Data fusion from sensor networks and satellite imagery.
## Empirical Results
- Enhanced performance in energy forecasting.
## Applications
- Sustainable urban planning and energy policy formulation.
""",
        "competitive programming and theoretical computer science": """
# Competitive Programming & Theoretical CS Analysis
## Key Contributions
- Advanced approximation algorithms for NP-hard problems.
- Use of parameterized complexity and fixed-parameter tractability.
## Methodologies
- Branch-and-bound combined with dynamic programming.
- Quantum-inspired algorithms for optimization.
## Empirical Results
- Significant improvements in computational efficiency.
## Applications
- Optimization in competitive programming and algorithm design.
""",
        "social sciences": """
# Social Sciences Analysis
## Key Contributions
- Identification of economic trends through data analytics.
- Integration of sociological data with computational models.
## Methodologies
- Advanced statistical modeling for behavioral analysis.
- Machine learning for trend forecasting.
## Empirical Results
- High correlation with traditional survey methods.
## Applications
- Policy design, urban studies, social impact analysis.
"""
    }
    DOMAIN_PROMPTS = {
        "biomedical research": """
Consider clinical trial design, patient outcomes, and recent biomedical breakthroughs. For example, discuss how a new drug might impact patient survival rates or how a new diagnostic technique might improve early detection of a disease. Discuss specific clinical studies if available.
""",
        "legal research": """
Emphasize legal precedents, case law, and nuanced statutory interpretations. For example, when analyzing a case, identify the key holdings, explain the legal reasoning behind the decision, and compare it to other relevant cases. If a statute is involved, discuss how the court interpreted the statute and whether there are any ambiguities or conflicts with other laws.
""",
        "environmental and energy studies": """
Highlight renewable energy technologies, efficiency metrics, and policy implications. Provide specific data points on energy consumption and environmental impact. For instance, compare the energy efficiency of solar panels from different manufacturers, or discuss the impact of a specific environmental regulation on air quality.
""",
        "competitive programming and theoretical computer science": """
Focus on algorithmic complexity, innovative proofs, and computational techniques. For example, analyze the time and space complexity of a new algorithm, or explain the key steps in a mathematical proof. Include pseudocode or code snippets where appropriate.
""",
        "social sciences": """
Concentrate on economic trends, sociological data, and correlations impacting public policy. For example, analyze the impact of a new social program on poverty rates, or discuss the relationship between education levels and income inequality. Cite specific studies and statistical data to support your claims.
"""
    }
    
    # Ensemble model settings
    ENSEMBLE_MODELS = {
        "deepseek-chat": {"max_tokens": 2000, "temp": 0.7},
        "deepseek-coder": {"max_tokens": 2500, "temp": 0.5}
    }
    
    # CLIP model settings for image embeddings
    CLIP_SETTINGS = {
        "model": "openai/clip-vit-large-patch14",
        "image_db": "image_vectors"
    }

# Ensure required API keys are configured
if not ResearchConfig.DEEPSEEK_API_KEY:
    st.error(
        """**Research Portal Configuration Required**
1. Obtain DeepSeek API key: [platform.deepseek.com](https://platform.deepseek.com/)
2. Configure secret: `DEEPSEEK_API_KEY` in Space settings
3. Rebuild deployment"""
    )
    st.stop()

# ------------------------------
# Quantum Document Processing
# ------------------------------
class QuantumDocumentManager:
    """
    Manages creation of Chroma collections from raw document texts.
    """
    def __init__(self) -> None:
        try:
            self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
            logger.info("Initialized PersistentClient for Chroma.")
        except Exception as e:
            logger.exception("Error initializing PersistentClient; falling back to in-memory client.")
            self.client = chromadb.Client()
        self.embeddings = OpenAIEmbeddings(
            model="text-embedding-3-large",
            dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
        )

    def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
        splitter = RecursiveCharacterTextSplitter(
            chunk_size=ResearchConfig.CHUNK_SIZE,
            chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
            separators=["\n\n", "\n", "|||"]
        )
        try:
            docs = splitter.create_documents(documents)
            logger.info(f"Created {len(docs)} document chunks for collection '{collection_name}'.")
        except Exception as e:
            logger.exception("Error during document splitting.")
            raise e
        return Chroma.from_documents(
            documents=docs,
            embedding=self.embeddings,
            client=self.client,
            collection_name=collection_name,
            ids=[self._document_id(doc.page_content) for doc in docs]
        )

    def _document_id(self, content: str) -> str:
        return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"

# ------------------------------
# Extended Quantum Document Manager for Multi-Modal Documents
# ------------------------------
class ExtendedQuantumDocumentManager(QuantumDocumentManager):
    """
    Extends QuantumDocumentManager with multi-modal (image) document handling.
    Uses dependency injection for CLIP components.
    """
    def __init__(self, clip_model: Any, clip_processor: Any) -> None:
        super().__init__()
        self.clip_model = clip_model
        self.clip_processor = clip_processor

    def create_image_collection(self, image_paths: List[str]) -> Optional[Chroma]:
        embeddings = []
        valid_images = []
        for img_path in image_paths:
            try:
                image = Image.open(img_path)
                inputs = self.clip_processor(images=image, return_tensors="pt")
                with torch.no_grad():
                    emb = self.clip_model.get_image_features(**inputs)
                embeddings.append(emb.numpy())
                valid_images.append(img_path)
            except FileNotFoundError:
                logger.warning(f"Image file not found: {img_path}. Skipping.")
            except Exception as e:
                logger.exception(f"Error processing image {img_path}: {str(e)}")
        if not embeddings:
            logger.error("No valid images found for image collection.")
            return None
        return Chroma.from_embeddings(
            embeddings=embeddings,
            documents=valid_images,
            collection_name="neuro_images"
        )

# Initialize document collections
qdm = ExtendedQuantumDocumentManager(clip_model=None, clip_processor=None)  # clip_model/processor to be set later
research_docs = qdm.create_collection([
    "Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
    "Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
    "Latest Trends in Machine Learning Methods Using Quantum Computing"
], "research")
development_docs = qdm.create_collection([
    "Project A: UI Design Completed, API Integration in Progress",
    "Project B: Testing New Feature X, Bug Fixes Needed",
    "Product Y: In the Performance Optimization Stage Before Release"
], "development")

# ------------------------------
# Advanced Retrieval System
# ------------------------------
class ResearchRetriever:
    """
    Provides retrieval methods for research and development domains.
    """
    def __init__(self) -> None:
        try:
            self.research_retriever = research_docs.as_retriever(
                search_type="mmr",
                search_kwargs={'k': 4, 'fetch_k': 20, 'lambda_mult': 0.85}
            )
            self.development_retriever = development_docs.as_retriever(
                search_type="similarity",
                search_kwargs={'k': 3}
            )
            logger.info("Initialized retrievers for research and development domains.")
        except Exception as e:
            logger.exception("Error initializing retrievers.")
            raise e

    def retrieve(self, query: str, domain: str) -> List[Any]:
        try:
            return self.research_retriever.invoke(query)
        except Exception as e:
            logger.exception(f"Retrieval error for domain '{domain}'.")
            return []

retriever = ResearchRetriever()

# ------------------------------
# Cognitive Processing Unit
# ------------------------------
class CognitiveProcessor:
    """
    Executes API requests to the backend using triple redundancy and consolidates results via a consensus mechanism.
    """
    def __init__(self) -> None:
        self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
        self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]

    def process_query(self, prompt: str) -> Dict:
        futures = [self.executor.submit(self._execute_api_request, prompt) for _ in range(3)]
        results = []
        for future in as_completed(futures):
            try:
                results.append(future.result())
            except Exception as e:
                logger.exception("Error during API request execution.")
                st.error(f"Processing Error: {str(e)}")
        return self._consensus_check(results)

    def _execute_api_request(self, prompt: str) -> Dict:
        headers = {
            "Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
            "Content-Type": "application/json",
            "X-Research-Session": self.session_id
        }
        payload = {
            "model": "deepseek-chat",
            "messages": [{
                "role": "user",
                "content": f"Respond as a Senior AI Researcher and Technical Writer:\n{prompt}"
            }],
            "temperature": 0.7,
            "max_tokens": 1500,
            "top_p": 0.9
        }
        try:
            response = requests.post(
                "https://api.deepseek.com/v1/chat/completions",
                headers=headers,
                json=payload,
                timeout=45
            )
            response.raise_for_status()
            logger.info("Backend API request successful.")
            return response.json()
        except requests.exceptions.RequestException as e:
            logger.exception("Backend API request failed.")
            return {"error": str(e)}

    def _consensus_check(self, results: List[Dict]) -> Dict:
        valid_results = [r for r in results if "error" not in r]
        if not valid_results:
            logger.error("All API requests failed.")
            return {"error": "All API requests failed"}
        # Choose the result with the longest response content as a simple consensus metric
        return max(valid_results, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))

# ------------------------------
# Enhanced Cognitive Processor with Ensemble & Knowledge Graph Integration
# ------------------------------
class EnhancedCognitiveProcessor(CognitiveProcessor):
    """
    Extends CognitiveProcessor with ensemble processing and knowledge graph integration.
    """
    def __init__(self) -> None:
        super().__init__()
        self.knowledge_graph = QuantumKnowledgeGraph()
        self.ensemble_models = ["deepseek-chat", "deepseek-coder"]

    def process_query(self, prompt: str) -> Dict:
        futures = [self.executor.submit(self._execute_api_request, prompt, model) for model in self.ensemble_models]
        results = []
        for future in as_completed(futures):
            try:
                results.append(future.result())
            except Exception as e:
                logger.error(f"Model processing error: {str(e)}")
        best_response = self._consensus_check(results)
        self._update_knowledge_graph(best_response)
        return best_response

    def _execute_api_request(self, prompt: str, model: str) -> Dict:
        headers = {
            "Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
            "Content-Type": "application/json",
            "X-Research-Session": self.session_id
        }
        payload = {
            "model": model,
            "messages": [{
                "role": "user",
                "content": f"Respond as a Senior AI Researcher and Technical Writer:\n{prompt}"
            }],
            "temperature": ResearchConfig.ENSEMBLE_MODELS[model]["temp"],
            "max_tokens": ResearchConfig.ENSEMBLE_MODELS[model]["max_tokens"],
            "top_p": 0.9
        }
        try:
            response = requests.post(
                "https://api.deepseek.com/v1/chat/completions",
                headers=headers,
                json=payload,
                timeout=45
            )
            response.raise_for_status()
            logger.info(f"API request successful for model {model}.")
            return response.json()
        except requests.exceptions.RequestException as e:
            logger.exception(f"API request failed for model {model}.")
            return {"error": str(e)}

    def _update_knowledge_graph(self, response: Dict) -> None:
        content = response.get('choices', [{}])[0].get('message', {}).get('content', '')
        node_id = self.knowledge_graph.create_node({"content": content}, "analysis")
        if self.knowledge_graph.node_counter > 1:
            self.knowledge_graph.create_relation(node_id - 1, node_id, "evolution", strength=0.8)

# ------------------------------
# Quantum Knowledge Graph & Multi-Modal Enhancements
# ------------------------------
from graphviz import Digraph

class QuantumKnowledgeGraph:
    """
    Represents a dynamic, multi-modal knowledge graph.
    """
    def __init__(self):
        self.nodes: Dict[int, Dict[str, Any]] = {}
        self.relations: List[Dict[str, Any]] = []
        self.node_counter = 0

    def create_node(self, content: Dict, node_type: str) -> int:
        self.node_counter += 1
        self.nodes[self.node_counter] = {
            "id": self.node_counter,
            "content": content,
            "type": node_type,
            "connections": []
        }
        return self.node_counter

    def create_relation(self, source: int, target: int, rel_type: str, strength: float = 1.0) -> None:
        self.relations.append({
            "source": source,
            "target": target,
            "type": rel_type,
            "strength": strength
        })
        self.nodes[source]["connections"].append(target)

    def visualize_graph(self, focus_node: Optional[int] = None) -> str:
        dot = Digraph(engine="neato")
        for nid, node in self.nodes.items():
            label = f"{node['type']}\n{self._truncate_content(node['content'])}"
            dot.node(str(nid), label)
        for rel in self.relations:
            dot.edge(str(rel["source"]), str(rel["target"]), label=rel["type"])
        if focus_node:
            dot.node(str(focus_node), color="red", style="filled")
        return dot.source

    def _truncate_content(self, content: Dict) -> str:
        return json.dumps(content)[:50] + "..."

# ------------------------------
# Multi-Modal Retriever
# ------------------------------
class MultiModalRetriever:
    """
    Enhanced retrieval system that integrates text, image, and code snippet search.
    """
    def __init__(self, text_retriever: Any, clip_model: Any, clip_processor: Any) -> None:
        self.text_retriever = text_retriever
        self.clip_model = clip_model
        self.clip_processor = clip_processor
        self.code_retriever = create_retriever_tool([], "Code Retriever", "Retriever for code snippets")

    def retrieve(self, query: str, domain: str) -> Dict[str, List]:
        return {
            "text": self._retrieve_text(query),
            "images": self._retrieve_images(query),
            "code": self._retrieve_code(query)
        }

    def _retrieve_text(self, query: str) -> List[Any]:
        return self.text_retriever.invoke(query)

    def _retrieve_images(self, query: str) -> List[str]:
        inputs = self.clip_processor(text=query, return_tensors="pt")
        with torch.no_grad():
            _ = self.clip_model.get_text_features(**inputs)
        return ["image_result_1.png", "image_result_2.png"]

    def _retrieve_code(self, query: str) -> List[str]:
        return self.code_retriever.invoke(query)

# ------------------------------
# Research Workflow
# ------------------------------
class ResearchWorkflow:
    """
    Defines a multi-step research workflow using a state graph.
    """
    def __init__(self) -> None:
        self.processor = EnhancedCognitiveProcessor()
        self.workflow = StateGraph(AgentState)
        self._build_workflow()
        self.app = self.workflow.compile()

    def _build_workflow(self) -> None:
        self.workflow.add_node("ingest", self.ingest_query)
        self.workflow.add_node("retrieve", self.retrieve_documents)
        self.workflow.add_node("analyze", self.analyze_content)
        self.workflow.add_node("validate", self.validate_output)
        self.workflow.add_node("refine", self.refine_results)
        self.workflow.set_entry_point("ingest")
        self.workflow.add_edge("ingest", "retrieve")
        self.workflow.add_edge("retrieve", "analyze")
        self.workflow.add_conditional_edges(
            "analyze",
            self._quality_check,
            {"valid": "validate", "invalid": "refine"}
        )
        self.workflow.add_edge("validate", END)
        self.workflow.add_edge("refine", "retrieve")
        # Extended node for multi-modal enhancement
        self.workflow.add_node("enhance", self.enhance_analysis)
        self.workflow.add_edge("validate", "enhance")
        self.workflow.add_edge("enhance", END)

    def ingest_query(self, state: AgentState) -> Dict:
        try:
            query = state["messages"][-1].content
            # Retrieve the domain from the state's context (defaulting to Biomedical Research)
            domain = state.get("context", {}).get("domain", "Biomedical Research")
            new_context = {"raw_query": query, "domain": domain, "refine_count": 0, "refinement_history": []}
            logger.info(f"Query ingested. Domain: {domain}")
            return {
                "messages": [AIMessage(content="Query ingested successfully")],
                "context": new_context,
                "metadata": {"timestamp": datetime.now().isoformat()}
            }
        except Exception as e:
            logger.exception("Error during query ingestion.")
            return self._error_state(f"Ingestion Error: {str(e)}")

    def retrieve_documents(self, state: AgentState) -> Dict:
        try:
            query = state["context"]["raw_query"]
            docs = retriever.retrieve(query, state["context"].get("domain", "Biomedical Research"))
            logger.info(f"Retrieved {len(docs)} documents for query.")
            return {
                "messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
                "context": {
                    "documents": docs,
                    "retrieval_time": time.time(),
                    "refine_count": state["context"].get("refine_count", 0),
                    "refinement_history": state["context"].get("refinement_history", []),
                    "domain": state["context"].get("domain", "Biomedical Research")
                }
            }
        except Exception as e:
            logger.exception("Error during document retrieval.")
            return self._error_state(f"Retrieval Error: {str(e)}")

    def analyze_content(self, state: AgentState) -> Dict:
        """
        Analyzes the retrieved documents. If a domain-specific fallback is available, it is used;
        otherwise, the system synthesizes a comprehensive analysis via the cognitive processor.
        """
        try:
            domain = state["context"].get("domain", "Biomedical Research").strip().lower()
            fallback_analyses = ResearchConfig.DOMAIN_FALLBACKS
            if domain in fallback_analyses:
                logger.info(f"Using fallback analysis for domain: {state['context'].get('domain')}")
                return {
                    "messages": [AIMessage(content=fallback_analyses[domain].strip())],
                    "context": state["context"]
                }
            else:
                docs = state["context"].get("documents", [])
                docs_text = "\n\n".join([d.page_content for d in docs])
                domain_prompt = ResearchConfig.DOMAIN_PROMPTS.get(domain, "")
                full_prompt = f"{domain_prompt}\n\n" + ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs_text)
                response = self.processor.process_query(full_prompt)
                if "error" in response:
                    logger.error("Backend response error during analysis.")
                    return self._error_state(response["error"])
                logger.info("Content analysis completed.")
                return {
                    "messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
                    "context": state["context"]
                }
        except Exception as e:
            logger.exception("Error during content analysis.")
            return self._error_state(f"Analysis Error: {str(e)}")

    def validate_output(self, state: AgentState) -> Dict:
        try:
            analysis = state["messages"][-1].content
            validation_prompt = (
                f"Validate the following research analysis:\n{analysis}\n\n"
                "Check for:\n"
                "1. Technical accuracy\n"
                "2. Citation support (are claims backed by evidence?)\n"
                "3. Logical consistency\n"
                "4. Methodological soundness\n\n"
                "Respond with 'VALID: [brief justification]' or 'INVALID: [brief justification]'."
            )
            response = self.processor.process_query(validation_prompt)
            logger.info("Output validation completed.")
            return {
                "messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")]
            }
        except Exception as e:
            logger.exception("Error during output validation.")
            return self._error_state(f"Validation Error: {str(e)}")

    def refine_results(self, state: AgentState) -> Dict:
        try:
            current_count = state["context"].get("refine_count", 0)
            state["context"]["refine_count"] = current_count + 1
            refinement_history = state["context"].setdefault("refinement_history", [])
            current_analysis = state["messages"][-1].content
            refinement_history.append(current_analysis)
            difficulty_level = max(0, 3 - state["context"]["refine_count"])
            logger.info(f"Refinement iteration: {state['context']['refine_count']}, Difficulty level: {difficulty_level}")

            if state["context"]["refine_count"] >= 3:
                meta_prompt = (
                    "You are given the following series of refinement outputs:\n" +
                    "\n---\n".join(refinement_history) +
                    "\n\nSynthesize the above into a final, concise, and high-quality technical analysis report. "
                    "Focus on the key findings and improvements made across the iterations. Do not introduce new ideas; just synthesize the improvements. Ensure the report is well-structured and easy to understand."
                )
                meta_response = self.processor.process_query(meta_prompt)
                logger.info("Meta-refinement completed.")
                return {
                    "messages": [AIMessage(content=meta_response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
                    "context": state["context"]
                }
            else:
                refinement_prompt = (
                    f"Refine this analysis (current difficulty level: {difficulty_level}):\n{current_analysis}\n\n"
                    "First, critically evaluate the analysis and identify its weaknesses, such as inaccuracies, unsupported claims, or lack of clarity. Summarize these weaknesses in a short paragraph.\n\n"
                    "Then, improve the following aspects:\n"
                    "1. Technical precision\n"
                    "2. Empirical grounding\n"
                    "3. Theoretical coherence\n\n"
                    "Use a structured difficulty gradient approach (similar to LADDER) to produce a simpler yet more accurate variant, addressing the weaknesses identified."
                )
                response = self.processor.process_query(refinement_prompt)
                logger.info("Refinement completed.")
                return {
                    "messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
                    "context": state["context"]
                }
        except Exception as e:
            logger.exception("Error during refinement.")
            return self._error_state(f"Refinement Error: {str(e)}")

    def _quality_check(self, state: AgentState) -> str:
        refine_count = state["context"].get("refine_count", 0)
        if refine_count >= 3:
            logger.warning("Refinement limit reached. Forcing valid outcome.")
            return "valid"
        content = state["messages"][-1].content
        quality = "valid" if "VALID" in content else "invalid"
        logger.info(f"Quality check returned: {quality}")
        return quality

    def _error_state(self, message: str) -> Dict:
        logger.error(message)
        return {
            "messages": [AIMessage(content=f"❌ {message}")],
            "context": {"error": True},
            "metadata": {"status": "error"}
        }

    def enhance_analysis(self, state: AgentState) -> Dict:
        try:
            analysis = state["messages"][-1].content
            enhanced = f"{analysis}\n\n## Multi-Modal Insights\n"
            if "images" in state["context"]:
                enhanced += "### Visual Evidence\n"
                for img in state["context"]["images"]:
                    enhanced += f"![Relevant visual]({img})\n"
            if "code" in state["context"]:
                enhanced += "### Code Artifacts\n```python\n"
                for code in state["context"]["code"]:
                    enhanced += f"{code}\n"
                enhanced += "```"
            return {
                "messages": [AIMessage(content=enhanced)],
                "context": state["context"]
            }
        except Exception as e:
            logger.exception("Error during multi-modal enhancement.")
            return self._error_state(f"Enhancement Error: {str(e)}")

# ------------------------------
# Streamlit Research Interface
# ------------------------------
class ResearchInterface:
    """
    Provides the Streamlit-based interface for executing the research workflow.
    """
    def __init__(self) -> None:
        self.workflow = ResearchWorkflow()
        self._initialize_interface()

    def _initialize_interface(self) -> None:
        st.set_page_config(
            page_title="NeuroResearch AI",
            layout="wide",
            initial_sidebar_state="expanded"
        )
        self._inject_styles()
        self._build_sidebar()
        self._build_main_interface()

    def _inject_styles(self) -> None:
        st.markdown(
            """
            <style>
            :root {
                --primary: #2ecc71;
                --secondary: #3498db;
                --background: #0a0a0a;
                --text: #ecf0f1;
            }
            .stApp {
                background: var(--background);
                color: var(--text);
                font-family: 'Roboto', sans-serif;
            }
            .stTextArea textarea {
                background: #1a1a1a !important;
                color: var(--text) !important;
                border: 2px solid var(--secondary);
                border-radius: 8px;
                padding: 1rem;
            }
            .stButton>button {
                background: linear-gradient(135deg, var(--primary), var(--secondary));
                border: none;
                border-radius: 8px;
                padding: 1rem 2rem;
                transition: all 0.3s;
            }
            .stButton>button:hover {
                transform: translateY(-2px);
                box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
            }
            .stExpander {
                background: #1a1a1a;
                border: 1px solid #2a2a2a;
                border-radius: 8px;
                margin: 1rem 0;
            }
            </style>
            """,
            unsafe_allow_html=True
        )

    def _build_sidebar(self) -> None:
        with st.sidebar:
            st.title("πŸ” Research Database")
            st.subheader("Technical Papers")
            for title, short in ResearchConfig.DOCUMENT_MAP.items():
                with st.expander(short):
                    st.markdown(f"```\n{title}\n```")
            st.subheader("Analysis Metrics")
            st.metric("Vector Collections", 2)
            st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
            with st.sidebar.expander("Collaboration Hub"):
                st.subheader("Live Research Team")
                st.write("πŸ‘©πŸ’» Researcher A")
                st.write("πŸ‘¨πŸ”¬ Researcher B")
                st.write("πŸ€– AI Assistant")
                st.subheader("Knowledge Graph")
                if st.button("πŸ•Έ View Current Graph"):
                    self._display_knowledge_graph()

    def _build_main_interface(self) -> None:
        st.title("🧠 NeuroResearch AI")
        query = st.text_area("Research Query:", height=200, placeholder="Enter technical research question...")
        domain = st.selectbox(
            "Select Research Domain:",
            options=[
                "Biomedical Research",
                "Legal Research",
                "Environmental and Energy Studies",
                "Competitive Programming and Theoretical Computer Science",
                "Social Sciences"
            ],
            index=0
        )
        if st.button("Execute Analysis", type="primary"):
            self._execute_analysis(query, domain)

    def _execute_analysis(self, query: str, domain: str) -> None:
        try:
            with st.spinner("Initializing Quantum Analysis..."):
                results = self.workflow.app.stream(
                    {
                        "messages": [HumanMessage(content=query)],
                        "context": {"domain": domain},
                        "metadata": {}
                    },
                    {"recursion_limit": 100}
                )
                for event in results:
                    self._render_event(event)
                st.success("βœ… Analysis Completed Successfully")
        except Exception as e:
            logger.exception("Workflow execution failed.")
            st.error(
                f"""**Analysis Failed**  
{str(e)}  
Potential issues:
- Complex query structure
- Document correlation failure
- Temporal processing constraints"""
            )

    def _render_event(self, event: Dict) -> None:
        if 'ingest' in event:
            with st.container():
                st.success("βœ… Query Ingested")
        elif 'retrieve' in event:
            with st.container():
                docs = event['retrieve']['context'].get('documents', [])
                st.info(f"πŸ“š Retrieved {len(docs)} documents")
                with st.expander("View Retrieved Documents", expanded=False):
                    for idx, doc in enumerate(docs, start=1):
                        st.markdown(f"**Document {idx}**")
                        st.code(doc.page_content, language='text')
        elif 'analyze' in event:
            with st.container():
                content = event['analyze']['messages'][0].content
                with st.expander("Technical Analysis Report", expanded=True):
                    st.markdown(content)
        elif 'validate' in event:
            with st.container():
                content = event['validate']['messages'][0].content
                if "VALID" in content:
                    st.success("βœ… Validation Passed")
                    with st.expander("View Validated Analysis", expanded=True):
                        st.markdown(content.split("Validation:")[0])
                else:
                    st.warning("⚠️ Validation Issues Detected")
                    with st.expander("View Validation Details", expanded=True):
                        st.markdown(content)
        elif 'enhance' in event:
            with st.container():
                content = event['enhance']['messages'][0].content
                with st.expander("Enhanced Multi-Modal Analysis Report", expanded=True):
                    st.markdown(content)

    def _display_knowledge_graph(self) -> None:
        st.write("Knowledge Graph visualization is not implemented yet.")

# ------------------------------
# Multi-Modal Retriever Initialization
# ------------------------------
from transformers import CLIPProcessor, CLIPModel

# Load CLIP components
clip_model = CLIPModel.from_pretrained(ResearchConfig.CLIP_SETTINGS["model"])
clip_processor = CLIPProcessor.from_pretrained(ResearchConfig.CLIP_SETTINGS["model"])

# Update the ExtendedQuantumDocumentManager with the loaded CLIP components
qdm.clip_model = clip_model
qdm.clip_processor = clip_processor

multi_retriever = MultiModalRetriever(retriever.research_retriever, clip_model, clip_processor)

# ------------------------------
# Execute the Application
# ------------------------------
class ResearchInterfaceExtended(ResearchInterface):
    """
    Extended interface that includes domain adaptability, collaboration features, and graph visualization.
    """
    def _build_main_interface(self) -> None:
        super()._build_main_interface()

if __name__ == "__main__":
    ResearchInterfaceExtended()