Spaces:
Sleeping
Sleeping
File size: 40,087 Bytes
1193c1f 7370048 dd92890 7370048 3cf95b0 dfecac2 3cf95b0 f8873d7 3cf95b0 7370048 2f8da59 1297378 7370048 de3ef7d a028cd7 7370048 d4c248d 7370048 1193c1f 14be288 f8873d7 7370048 f8873d7 7370048 3cf95b0 1193c1f 3cf95b0 7370048 1193c1f d4c248d 7370048 1193c1f 3cf95b0 7370048 1193c1f 7370048 d4c248d 9c89976 1193c1f 7370048 1193c1f d179217 1193c1f d179217 7370048 1193c1f b294f9c 9a46c55 b294f9c 9a46c55 b294f9c 9a46c55 b294f9c 9a46c55 b294f9c a0f60c0 d179217 1193c1f d179217 1193c1f d179217 1193c1f d179217 1193c1f d179217 1193c1f a0f60c0 1193c1f a028cd7 1193c1f a028cd7 7370048 1193c1f d4c248d 7370048 d179217 d4c248d 7370048 bfe5a86 9370b00 d4c248d bfe5a86 d4c248d de3ef7d d4c248d de3ef7d 7370048 de3ef7d b6b8274 b294f9c 3cf95b0 7370048 3cf95b0 de3ef7d 7370048 d4c248d 7370048 b6b8274 7370048 9370b00 dfecac2 7370048 bb1beb6 1193c1f bb1beb6 1ab249a bb1beb6 1ab249a 1193c1f 1ab249a 1193c1f 1ab249a 52dcd24 b294f9c 1ab249a bb1beb6 1ab249a bb1beb6 d4c248d 1193c1f d4c248d 7370048 d4c248d 7370048 1193c1f 7370048 3cf95b0 7370048 3cf95b0 7370048 9370b00 b6b8274 7370048 de3ef7d a0f60c0 de3ef7d b6b8274 7370048 de3ef7d 7370048 de3ef7d 7370048 9dc7678 7370048 de3ef7d 7370048 1193c1f 7370048 b6b8274 7370048 d4c248d 7370048 d4c248d 1193c1f d4c248d 7370048 de3ef7d 7370048 d4c248d 7370048 de3ef7d 7370048 9dc7678 7370048 9dc7678 7370048 d4c248d 7370048 1193c1f d4c248d 7370048 a028cd7 1193c1f a028cd7 1193c1f a028cd7 1193c1f a028cd7 1193c1f a028cd7 1193c1f a028cd7 1193c1f a028cd7 d179217 a028cd7 d179217 1193c1f a028cd7 d179217 1193c1f a028cd7 d179217 a028cd7 1193c1f a028cd7 1193c1f a028cd7 496a1bb d179217 a028cd7 1193c1f a028cd7 d179217 a028cd7 d179217 a028cd7 52dcd24 a028cd7 d179217 a028cd7 9dc7678 7370048 1193c1f 7370048 a028cd7 7370048 9370b00 7370048 a028cd7 de3ef7d 7370048 efa51c3 a0f60c0 7370048 f8873d7 7370048 b6b8274 d4c248d de3ef7d 7370048 a0f60c0 7370048 a0f60c0 7370048 b6b8274 d4c248d de3ef7d 7370048 1193c1f 7370048 9a46c55 9dc7678 9a46c55 9dc7678 7370048 b6b8274 d4c248d de3ef7d 7370048 b6b8274 d179217 1193c1f b6b8274 de3ef7d 7370048 b6b8274 d179217 b6b8274 d179217 1193c1f b6b8274 1193c1f d179217 b6b8274 de3ef7d 7370048 f8873d7 9dc7678 f8873d7 7370048 d4c248d de3ef7d 7370048 d179217 52dcd24 ddd0e04 09a0b53 9dc7678 09a0b53 7370048 de3ef7d d4c248d de3ef7d 7370048 d4c248d 7370048 3cf95b0 7370048 d4c248d 7370048 a028cd7 7370048 d4c248d 9dc7678 a0f60c0 7370048 a0f60c0 7370048 a0f60c0 7370048 d4c248d 9dc7678 7370048 b6b8274 7370048 9370b00 7370048 d4c248d 7370048 de3ef7d 7370048 a028cd7 9dc7678 a028cd7 1193c1f a028cd7 1193c1f a028cd7 496a1bb 1193c1f a028cd7 ddd0e04 496a1bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 |
"""
Enhanced NeuroResearch AI System
---------------------------------
This application integrates domain-adaptive multi-modal retrieval, ensemble cognitive processing,
and dynamic knowledge graph construction. It is designed for advanced technical research,
analysis, and reporting, employing triple-redundant API requests and a structured state workflow.
"""
import logging
import os
import re
import hashlib
import json
import time
import sys
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Dict, Any, Optional, Sequence
import chromadb
import requests
import streamlit as st
from PIL import Image
import torch
# LangChain and LangGraph imports
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from langchain.tools.retriever import create_retriever_tool
# Increase Python's recursion limit if needed
sys.setrecursionlimit(1000)
# ------------------------------
# Logging Configuration
# ------------------------------
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s"
)
logger = logging.getLogger(__name__)
# ------------------------------
# State Schema Definition
# ------------------------------
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
context: Dict[str, Any]
metadata: Dict[str, Any]
# ------------------------------
# Application Configuration
# ------------------------------
class ResearchConfig:
# Environment & API configuration
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
CHROMA_PATH = "chroma_db"
# Document processing settings
CHUNK_SIZE = 512
CHUNK_OVERLAP = 64
MAX_CONCURRENT_REQUESTS = 5
EMBEDDING_DIMENSIONS = 1536
# Mapping of documents to research topics
DOCUMENT_MAP = {
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%":
"CV-Transformer Hybrid Architecture",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing":
"Transformer Architecture Analysis",
"Latest Trends in Machine Learning Methods Using Quantum Computing":
"Quantum ML Frontiers"
}
# Template for detailed analysis using Markdown and LaTeX formatting
ANALYSIS_TEMPLATE = (
"Let's think step by step. Synthesize a comprehensive technical report based on the following documents. "
"Focus on identifying the key innovations, empirical results, and potential limitations. Explicitly state any assumptions made during your analysis. "
"The report MUST be valid Markdown, and all mathematical notation MUST be correctly formatted LaTeX (e.g., `E=mc^2`).\n\n"
"Documents:\n{context}\n\n"
"Respond with the following structure:\n"
"# Technical Analysis Report\n\n"
"1. **Key Technical Contributions:** (Bullet points highlighting the main innovations)\n"
"2. **Novel Methodologies:** (Detailed explanation of the new methods used)\n"
"3. **Empirical Results:** (Quantitative results with specific metrics, e.g., accuracy, precision, recall, F1-score. Include confidence intervals where appropriate.)\n"
"4. **Potential Applications:** (Real-world applications of the technology)\n"
"5. **Limitations and Future Directions:** (Current limitations and suggestions for future research)\n\n"
"Format: Markdown with LaTeX mathematical notation where applicable."
)
# Domain-specific fallback analyses and prompts
DOMAIN_FALLBACKS = {
"biomedical research": """
# Biomedical Research Analysis
## Key Contributions
- Integration of clinical trial design with digital biomarkers.
- Multi-omics data used for precise patient stratification.
## Methodologies
- Machine learning for precision medicine.
- Federated learning for multi-center trials.
## Empirical Results
- Significant improvements in patient outcomes.
## Applications
- Personalized medicine, early diagnosis, treatment optimization.
""",
"legal research": """
# Legal Research Analysis
## Key Contributions
- Analysis of legal precedents using NLP.
- Advanced case law retrieval and summarization.
## Methodologies
- Automated legal reasoning with transformer models.
- Sentiment analysis on judicial opinions.
## Empirical Results
- Improved accuracy in predicting case outcomes.
## Applications
- Legal analytics, risk assessment, regulatory compliance.
""",
"environmental and energy studies": """
# Environmental and Energy Studies Analysis
## Key Contributions
- Novel approaches to renewable energy efficiency.
- Integration of policy analysis with technical metrics.
## Methodologies
- Simulation models for climate impact.
- Data fusion from sensor networks and satellite imagery.
## Empirical Results
- Enhanced performance in energy forecasting.
## Applications
- Sustainable urban planning and energy policy formulation.
""",
"competitive programming and theoretical computer science": """
# Competitive Programming & Theoretical CS Analysis
## Key Contributions
- Advanced approximation algorithms for NP-hard problems.
- Use of parameterized complexity and fixed-parameter tractability.
## Methodologies
- Branch-and-bound combined with dynamic programming.
- Quantum-inspired algorithms for optimization.
## Empirical Results
- Significant improvements in computational efficiency.
## Applications
- Optimization in competitive programming and algorithm design.
""",
"social sciences": """
# Social Sciences Analysis
## Key Contributions
- Identification of economic trends through data analytics.
- Integration of sociological data with computational models.
## Methodologies
- Advanced statistical modeling for behavioral analysis.
- Machine learning for trend forecasting.
## Empirical Results
- High correlation with traditional survey methods.
## Applications
- Policy design, urban studies, social impact analysis.
"""
}
DOMAIN_PROMPTS = {
"biomedical research": """
Consider clinical trial design, patient outcomes, and recent biomedical breakthroughs. For example, discuss how a new drug might impact patient survival rates or how a new diagnostic technique might improve early detection of a disease. Discuss specific clinical studies if available.
""",
"legal research": """
Emphasize legal precedents, case law, and nuanced statutory interpretations. For example, when analyzing a case, identify the key holdings, explain the legal reasoning behind the decision, and compare it to other relevant cases. If a statute is involved, discuss how the court interpreted the statute and whether there are any ambiguities or conflicts with other laws.
""",
"environmental and energy studies": """
Highlight renewable energy technologies, efficiency metrics, and policy implications. Provide specific data points on energy consumption and environmental impact. For instance, compare the energy efficiency of solar panels from different manufacturers, or discuss the impact of a specific environmental regulation on air quality.
""",
"competitive programming and theoretical computer science": """
Focus on algorithmic complexity, innovative proofs, and computational techniques. For example, analyze the time and space complexity of a new algorithm, or explain the key steps in a mathematical proof. Include pseudocode or code snippets where appropriate.
""",
"social sciences": """
Concentrate on economic trends, sociological data, and correlations impacting public policy. For example, analyze the impact of a new social program on poverty rates, or discuss the relationship between education levels and income inequality. Cite specific studies and statistical data to support your claims.
"""
}
# Ensemble model settings
ENSEMBLE_MODELS = {
"deepseek-chat": {"max_tokens": 2000, "temp": 0.7},
"deepseek-coder": {"max_tokens": 2500, "temp": 0.5}
}
# CLIP model settings for image embeddings
CLIP_SETTINGS = {
"model": "openai/clip-vit-large-patch14",
"image_db": "image_vectors"
}
# Ensure required API keys are configured
if not ResearchConfig.DEEPSEEK_API_KEY:
st.error(
"""**Research Portal Configuration Required**
1. Obtain DeepSeek API key: [platform.deepseek.com](https://platform.deepseek.com/)
2. Configure secret: `DEEPSEEK_API_KEY` in Space settings
3. Rebuild deployment"""
)
st.stop()
# ------------------------------
# Quantum Document Processing
# ------------------------------
class QuantumDocumentManager:
"""
Manages creation of Chroma collections from raw document texts.
"""
def __init__(self) -> None:
try:
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
logger.info("Initialized PersistentClient for Chroma.")
except Exception as e:
logger.exception("Error initializing PersistentClient; falling back to in-memory client.")
self.client = chromadb.Client()
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
)
def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
splitter = RecursiveCharacterTextSplitter(
chunk_size=ResearchConfig.CHUNK_SIZE,
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
separators=["\n\n", "\n", "|||"]
)
try:
docs = splitter.create_documents(documents)
logger.info(f"Created {len(docs)} document chunks for collection '{collection_name}'.")
except Exception as e:
logger.exception("Error during document splitting.")
raise e
return Chroma.from_documents(
documents=docs,
embedding=self.embeddings,
client=self.client,
collection_name=collection_name,
ids=[self._document_id(doc.page_content) for doc in docs]
)
def _document_id(self, content: str) -> str:
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
# ------------------------------
# Extended Quantum Document Manager for Multi-Modal Documents
# ------------------------------
class ExtendedQuantumDocumentManager(QuantumDocumentManager):
"""
Extends QuantumDocumentManager with multi-modal (image) document handling.
Uses dependency injection for CLIP components.
"""
def __init__(self, clip_model: Any, clip_processor: Any) -> None:
super().__init__()
self.clip_model = clip_model
self.clip_processor = clip_processor
def create_image_collection(self, image_paths: List[str]) -> Optional[Chroma]:
embeddings = []
valid_images = []
for img_path in image_paths:
try:
image = Image.open(img_path)
inputs = self.clip_processor(images=image, return_tensors="pt")
with torch.no_grad():
emb = self.clip_model.get_image_features(**inputs)
embeddings.append(emb.numpy())
valid_images.append(img_path)
except FileNotFoundError:
logger.warning(f"Image file not found: {img_path}. Skipping.")
except Exception as e:
logger.exception(f"Error processing image {img_path}: {str(e)}")
if not embeddings:
logger.error("No valid images found for image collection.")
return None
return Chroma.from_embeddings(
embeddings=embeddings,
documents=valid_images,
collection_name="neuro_images"
)
# Initialize document collections
qdm = ExtendedQuantumDocumentManager(clip_model=None, clip_processor=None) # clip_model/processor to be set later
research_docs = qdm.create_collection([
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
"Latest Trends in Machine Learning Methods Using Quantum Computing"
], "research")
development_docs = qdm.create_collection([
"Project A: UI Design Completed, API Integration in Progress",
"Project B: Testing New Feature X, Bug Fixes Needed",
"Product Y: In the Performance Optimization Stage Before Release"
], "development")
# ------------------------------
# Advanced Retrieval System
# ------------------------------
class ResearchRetriever:
"""
Provides retrieval methods for research and development domains.
"""
def __init__(self) -> None:
try:
self.research_retriever = research_docs.as_retriever(
search_type="mmr",
search_kwargs={'k': 4, 'fetch_k': 20, 'lambda_mult': 0.85}
)
self.development_retriever = development_docs.as_retriever(
search_type="similarity",
search_kwargs={'k': 3}
)
logger.info("Initialized retrievers for research and development domains.")
except Exception as e:
logger.exception("Error initializing retrievers.")
raise e
def retrieve(self, query: str, domain: str) -> List[Any]:
try:
return self.research_retriever.invoke(query)
except Exception as e:
logger.exception(f"Retrieval error for domain '{domain}'.")
return []
retriever = ResearchRetriever()
# ------------------------------
# Cognitive Processing Unit
# ------------------------------
class CognitiveProcessor:
"""
Executes API requests to the backend using triple redundancy and consolidates results via a consensus mechanism.
"""
def __init__(self) -> None:
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
def process_query(self, prompt: str) -> Dict:
futures = [self.executor.submit(self._execute_api_request, prompt) for _ in range(3)]
results = []
for future in as_completed(futures):
try:
results.append(future.result())
except Exception as e:
logger.exception("Error during API request execution.")
st.error(f"Processing Error: {str(e)}")
return self._consensus_check(results)
def _execute_api_request(self, prompt: str) -> Dict:
headers = {
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
"Content-Type": "application/json",
"X-Research-Session": self.session_id
}
payload = {
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Respond as a Senior AI Researcher and Technical Writer:\n{prompt}"
}],
"temperature": 0.7,
"max_tokens": 1500,
"top_p": 0.9
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=payload,
timeout=45
)
response.raise_for_status()
logger.info("Backend API request successful.")
return response.json()
except requests.exceptions.RequestException as e:
logger.exception("Backend API request failed.")
return {"error": str(e)}
def _consensus_check(self, results: List[Dict]) -> Dict:
valid_results = [r for r in results if "error" not in r]
if not valid_results:
logger.error("All API requests failed.")
return {"error": "All API requests failed"}
# Choose the result with the longest response content as a simple consensus metric
return max(valid_results, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
# ------------------------------
# Enhanced Cognitive Processor with Ensemble & Knowledge Graph Integration
# ------------------------------
class EnhancedCognitiveProcessor(CognitiveProcessor):
"""
Extends CognitiveProcessor with ensemble processing and knowledge graph integration.
"""
def __init__(self) -> None:
super().__init__()
self.knowledge_graph = QuantumKnowledgeGraph()
self.ensemble_models = ["deepseek-chat", "deepseek-coder"]
def process_query(self, prompt: str) -> Dict:
futures = [self.executor.submit(self._execute_api_request, prompt, model) for model in self.ensemble_models]
results = []
for future in as_completed(futures):
try:
results.append(future.result())
except Exception as e:
logger.error(f"Model processing error: {str(e)}")
best_response = self._consensus_check(results)
self._update_knowledge_graph(best_response)
return best_response
def _execute_api_request(self, prompt: str, model: str) -> Dict:
headers = {
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
"Content-Type": "application/json",
"X-Research-Session": self.session_id
}
payload = {
"model": model,
"messages": [{
"role": "user",
"content": f"Respond as a Senior AI Researcher and Technical Writer:\n{prompt}"
}],
"temperature": ResearchConfig.ENSEMBLE_MODELS[model]["temp"],
"max_tokens": ResearchConfig.ENSEMBLE_MODELS[model]["max_tokens"],
"top_p": 0.9
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=payload,
timeout=45
)
response.raise_for_status()
logger.info(f"API request successful for model {model}.")
return response.json()
except requests.exceptions.RequestException as e:
logger.exception(f"API request failed for model {model}.")
return {"error": str(e)}
def _update_knowledge_graph(self, response: Dict) -> None:
content = response.get('choices', [{}])[0].get('message', {}).get('content', '')
node_id = self.knowledge_graph.create_node({"content": content}, "analysis")
if self.knowledge_graph.node_counter > 1:
self.knowledge_graph.create_relation(node_id - 1, node_id, "evolution", strength=0.8)
# ------------------------------
# Quantum Knowledge Graph & Multi-Modal Enhancements
# ------------------------------
from graphviz import Digraph
class QuantumKnowledgeGraph:
"""
Represents a dynamic, multi-modal knowledge graph.
"""
def __init__(self):
self.nodes: Dict[int, Dict[str, Any]] = {}
self.relations: List[Dict[str, Any]] = []
self.node_counter = 0
def create_node(self, content: Dict, node_type: str) -> int:
self.node_counter += 1
self.nodes[self.node_counter] = {
"id": self.node_counter,
"content": content,
"type": node_type,
"connections": []
}
return self.node_counter
def create_relation(self, source: int, target: int, rel_type: str, strength: float = 1.0) -> None:
self.relations.append({
"source": source,
"target": target,
"type": rel_type,
"strength": strength
})
self.nodes[source]["connections"].append(target)
def visualize_graph(self, focus_node: Optional[int] = None) -> str:
dot = Digraph(engine="neato")
for nid, node in self.nodes.items():
label = f"{node['type']}\n{self._truncate_content(node['content'])}"
dot.node(str(nid), label)
for rel in self.relations:
dot.edge(str(rel["source"]), str(rel["target"]), label=rel["type"])
if focus_node:
dot.node(str(focus_node), color="red", style="filled")
return dot.source
def _truncate_content(self, content: Dict) -> str:
return json.dumps(content)[:50] + "..."
# ------------------------------
# Multi-Modal Retriever
# ------------------------------
class MultiModalRetriever:
"""
Enhanced retrieval system that integrates text, image, and code snippet search.
"""
def __init__(self, text_retriever: Any, clip_model: Any, clip_processor: Any) -> None:
self.text_retriever = text_retriever
self.clip_model = clip_model
self.clip_processor = clip_processor
self.code_retriever = create_retriever_tool([], "Code Retriever", "Retriever for code snippets")
def retrieve(self, query: str, domain: str) -> Dict[str, List]:
return {
"text": self._retrieve_text(query),
"images": self._retrieve_images(query),
"code": self._retrieve_code(query)
}
def _retrieve_text(self, query: str) -> List[Any]:
return self.text_retriever.invoke(query)
def _retrieve_images(self, query: str) -> List[str]:
inputs = self.clip_processor(text=query, return_tensors="pt")
with torch.no_grad():
_ = self.clip_model.get_text_features(**inputs)
return ["image_result_1.png", "image_result_2.png"]
def _retrieve_code(self, query: str) -> List[str]:
return self.code_retriever.invoke(query)
# ------------------------------
# Research Workflow
# ------------------------------
class ResearchWorkflow:
"""
Defines a multi-step research workflow using a state graph.
"""
def __init__(self) -> None:
self.processor = EnhancedCognitiveProcessor()
self.workflow = StateGraph(AgentState)
self._build_workflow()
self.app = self.workflow.compile()
def _build_workflow(self) -> None:
self.workflow.add_node("ingest", self.ingest_query)
self.workflow.add_node("retrieve", self.retrieve_documents)
self.workflow.add_node("analyze", self.analyze_content)
self.workflow.add_node("validate", self.validate_output)
self.workflow.add_node("refine", self.refine_results)
self.workflow.set_entry_point("ingest")
self.workflow.add_edge("ingest", "retrieve")
self.workflow.add_edge("retrieve", "analyze")
self.workflow.add_conditional_edges(
"analyze",
self._quality_check,
{"valid": "validate", "invalid": "refine"}
)
self.workflow.add_edge("validate", END)
self.workflow.add_edge("refine", "retrieve")
# Extended node for multi-modal enhancement
self.workflow.add_node("enhance", self.enhance_analysis)
self.workflow.add_edge("validate", "enhance")
self.workflow.add_edge("enhance", END)
def ingest_query(self, state: AgentState) -> Dict:
try:
query = state["messages"][-1].content
# Retrieve the domain from the state's context (defaulting to Biomedical Research)
domain = state.get("context", {}).get("domain", "Biomedical Research")
new_context = {"raw_query": query, "domain": domain, "refine_count": 0, "refinement_history": []}
logger.info(f"Query ingested. Domain: {domain}")
return {
"messages": [AIMessage(content="Query ingested successfully")],
"context": new_context,
"metadata": {"timestamp": datetime.now().isoformat()}
}
except Exception as e:
logger.exception("Error during query ingestion.")
return self._error_state(f"Ingestion Error: {str(e)}")
def retrieve_documents(self, state: AgentState) -> Dict:
try:
query = state["context"]["raw_query"]
docs = retriever.retrieve(query, state["context"].get("domain", "Biomedical Research"))
logger.info(f"Retrieved {len(docs)} documents for query.")
return {
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
"context": {
"documents": docs,
"retrieval_time": time.time(),
"refine_count": state["context"].get("refine_count", 0),
"refinement_history": state["context"].get("refinement_history", []),
"domain": state["context"].get("domain", "Biomedical Research")
}
}
except Exception as e:
logger.exception("Error during document retrieval.")
return self._error_state(f"Retrieval Error: {str(e)}")
def analyze_content(self, state: AgentState) -> Dict:
"""
Analyzes the retrieved documents. If a domain-specific fallback is available, it is used;
otherwise, the system synthesizes a comprehensive analysis via the cognitive processor.
"""
try:
domain = state["context"].get("domain", "Biomedical Research").strip().lower()
fallback_analyses = ResearchConfig.DOMAIN_FALLBACKS
if domain in fallback_analyses:
logger.info(f"Using fallback analysis for domain: {state['context'].get('domain')}")
return {
"messages": [AIMessage(content=fallback_analyses[domain].strip())],
"context": state["context"]
}
else:
docs = state["context"].get("documents", [])
docs_text = "\n\n".join([d.page_content for d in docs])
domain_prompt = ResearchConfig.DOMAIN_PROMPTS.get(domain, "")
full_prompt = f"{domain_prompt}\n\n" + ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs_text)
response = self.processor.process_query(full_prompt)
if "error" in response:
logger.error("Backend response error during analysis.")
return self._error_state(response["error"])
logger.info("Content analysis completed.")
return {
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
except Exception as e:
logger.exception("Error during content analysis.")
return self._error_state(f"Analysis Error: {str(e)}")
def validate_output(self, state: AgentState) -> Dict:
try:
analysis = state["messages"][-1].content
validation_prompt = (
f"Validate the following research analysis:\n{analysis}\n\n"
"Check for:\n"
"1. Technical accuracy\n"
"2. Citation support (are claims backed by evidence?)\n"
"3. Logical consistency\n"
"4. Methodological soundness\n\n"
"Respond with 'VALID: [brief justification]' or 'INVALID: [brief justification]'."
)
response = self.processor.process_query(validation_prompt)
logger.info("Output validation completed.")
return {
"messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")]
}
except Exception as e:
logger.exception("Error during output validation.")
return self._error_state(f"Validation Error: {str(e)}")
def refine_results(self, state: AgentState) -> Dict:
try:
current_count = state["context"].get("refine_count", 0)
state["context"]["refine_count"] = current_count + 1
refinement_history = state["context"].setdefault("refinement_history", [])
current_analysis = state["messages"][-1].content
refinement_history.append(current_analysis)
difficulty_level = max(0, 3 - state["context"]["refine_count"])
logger.info(f"Refinement iteration: {state['context']['refine_count']}, Difficulty level: {difficulty_level}")
if state["context"]["refine_count"] >= 3:
meta_prompt = (
"You are given the following series of refinement outputs:\n" +
"\n---\n".join(refinement_history) +
"\n\nSynthesize the above into a final, concise, and high-quality technical analysis report. "
"Focus on the key findings and improvements made across the iterations. Do not introduce new ideas; just synthesize the improvements. Ensure the report is well-structured and easy to understand."
)
meta_response = self.processor.process_query(meta_prompt)
logger.info("Meta-refinement completed.")
return {
"messages": [AIMessage(content=meta_response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
else:
refinement_prompt = (
f"Refine this analysis (current difficulty level: {difficulty_level}):\n{current_analysis}\n\n"
"First, critically evaluate the analysis and identify its weaknesses, such as inaccuracies, unsupported claims, or lack of clarity. Summarize these weaknesses in a short paragraph.\n\n"
"Then, improve the following aspects:\n"
"1. Technical precision\n"
"2. Empirical grounding\n"
"3. Theoretical coherence\n\n"
"Use a structured difficulty gradient approach (similar to LADDER) to produce a simpler yet more accurate variant, addressing the weaknesses identified."
)
response = self.processor.process_query(refinement_prompt)
logger.info("Refinement completed.")
return {
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
except Exception as e:
logger.exception("Error during refinement.")
return self._error_state(f"Refinement Error: {str(e)}")
def _quality_check(self, state: AgentState) -> str:
refine_count = state["context"].get("refine_count", 0)
if refine_count >= 3:
logger.warning("Refinement limit reached. Forcing valid outcome.")
return "valid"
content = state["messages"][-1].content
quality = "valid" if "VALID" in content else "invalid"
logger.info(f"Quality check returned: {quality}")
return quality
def _error_state(self, message: str) -> Dict:
logger.error(message)
return {
"messages": [AIMessage(content=f"β {message}")],
"context": {"error": True},
"metadata": {"status": "error"}
}
def enhance_analysis(self, state: AgentState) -> Dict:
try:
analysis = state["messages"][-1].content
enhanced = f"{analysis}\n\n## Multi-Modal Insights\n"
if "images" in state["context"]:
enhanced += "### Visual Evidence\n"
for img in state["context"]["images"]:
enhanced += f"\n"
if "code" in state["context"]:
enhanced += "### Code Artifacts\n```python\n"
for code in state["context"]["code"]:
enhanced += f"{code}\n"
enhanced += "```"
return {
"messages": [AIMessage(content=enhanced)],
"context": state["context"]
}
except Exception as e:
logger.exception("Error during multi-modal enhancement.")
return self._error_state(f"Enhancement Error: {str(e)}")
# ------------------------------
# Streamlit Research Interface
# ------------------------------
class ResearchInterface:
"""
Provides the Streamlit-based interface for executing the research workflow.
"""
def __init__(self) -> None:
self.workflow = ResearchWorkflow()
self._initialize_interface()
def _initialize_interface(self) -> None:
st.set_page_config(
page_title="NeuroResearch AI",
layout="wide",
initial_sidebar_state="expanded"
)
self._inject_styles()
self._build_sidebar()
self._build_main_interface()
def _inject_styles(self) -> None:
st.markdown(
"""
<style>
:root {
--primary: #2ecc71;
--secondary: #3498db;
--background: #0a0a0a;
--text: #ecf0f1;
}
.stApp {
background: var(--background);
color: var(--text);
font-family: 'Roboto', sans-serif;
}
.stTextArea textarea {
background: #1a1a1a !important;
color: var(--text) !important;
border: 2px solid var(--secondary);
border-radius: 8px;
padding: 1rem;
}
.stButton>button {
background: linear-gradient(135deg, var(--primary), var(--secondary));
border: none;
border-radius: 8px;
padding: 1rem 2rem;
transition: all 0.3s;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
}
.stExpander {
background: #1a1a1a;
border: 1px solid #2a2a2a;
border-radius: 8px;
margin: 1rem 0;
}
</style>
""",
unsafe_allow_html=True
)
def _build_sidebar(self) -> None:
with st.sidebar:
st.title("π Research Database")
st.subheader("Technical Papers")
for title, short in ResearchConfig.DOCUMENT_MAP.items():
with st.expander(short):
st.markdown(f"```\n{title}\n```")
st.subheader("Analysis Metrics")
st.metric("Vector Collections", 2)
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
with st.sidebar.expander("Collaboration Hub"):
st.subheader("Live Research Team")
st.write("π©π» Researcher A")
st.write("π¨π¬ Researcher B")
st.write("π€ AI Assistant")
st.subheader("Knowledge Graph")
if st.button("πΈ View Current Graph"):
self._display_knowledge_graph()
def _build_main_interface(self) -> None:
st.title("π§ NeuroResearch AI")
query = st.text_area("Research Query:", height=200, placeholder="Enter technical research question...")
domain = st.selectbox(
"Select Research Domain:",
options=[
"Biomedical Research",
"Legal Research",
"Environmental and Energy Studies",
"Competitive Programming and Theoretical Computer Science",
"Social Sciences"
],
index=0
)
if st.button("Execute Analysis", type="primary"):
self._execute_analysis(query, domain)
def _execute_analysis(self, query: str, domain: str) -> None:
try:
with st.spinner("Initializing Quantum Analysis..."):
results = self.workflow.app.stream(
{
"messages": [HumanMessage(content=query)],
"context": {"domain": domain},
"metadata": {}
},
{"recursion_limit": 100}
)
for event in results:
self._render_event(event)
st.success("β
Analysis Completed Successfully")
except Exception as e:
logger.exception("Workflow execution failed.")
st.error(
f"""**Analysis Failed**
{str(e)}
Potential issues:
- Complex query structure
- Document correlation failure
- Temporal processing constraints"""
)
def _render_event(self, event: Dict) -> None:
if 'ingest' in event:
with st.container():
st.success("β
Query Ingested")
elif 'retrieve' in event:
with st.container():
docs = event['retrieve']['context'].get('documents', [])
st.info(f"π Retrieved {len(docs)} documents")
with st.expander("View Retrieved Documents", expanded=False):
for idx, doc in enumerate(docs, start=1):
st.markdown(f"**Document {idx}**")
st.code(doc.page_content, language='text')
elif 'analyze' in event:
with st.container():
content = event['analyze']['messages'][0].content
with st.expander("Technical Analysis Report", expanded=True):
st.markdown(content)
elif 'validate' in event:
with st.container():
content = event['validate']['messages'][0].content
if "VALID" in content:
st.success("β
Validation Passed")
with st.expander("View Validated Analysis", expanded=True):
st.markdown(content.split("Validation:")[0])
else:
st.warning("β οΈ Validation Issues Detected")
with st.expander("View Validation Details", expanded=True):
st.markdown(content)
elif 'enhance' in event:
with st.container():
content = event['enhance']['messages'][0].content
with st.expander("Enhanced Multi-Modal Analysis Report", expanded=True):
st.markdown(content)
def _display_knowledge_graph(self) -> None:
st.write("Knowledge Graph visualization is not implemented yet.")
# ------------------------------
# Multi-Modal Retriever Initialization
# ------------------------------
from transformers import CLIPProcessor, CLIPModel
# Load CLIP components
clip_model = CLIPModel.from_pretrained(ResearchConfig.CLIP_SETTINGS["model"])
clip_processor = CLIPProcessor.from_pretrained(ResearchConfig.CLIP_SETTINGS["model"])
# Update the ExtendedQuantumDocumentManager with the loaded CLIP components
qdm.clip_model = clip_model
qdm.clip_processor = clip_processor
multi_retriever = MultiModalRetriever(retriever.research_retriever, clip_model, clip_processor)
# ------------------------------
# Execute the Application
# ------------------------------
class ResearchInterfaceExtended(ResearchInterface):
"""
Extended interface that includes domain adaptability, collaboration features, and graph visualization.
"""
def _build_main_interface(self) -> None:
super()._build_main_interface()
if __name__ == "__main__":
ResearchInterfaceExtended()
|