Spaces:
Sleeping
Sleeping
File size: 22,048 Bytes
09a0b53 f7afb44 09a0b53 7370048 dd92890 7370048 3cf95b0 dfecac2 3cf95b0 f8873d7 3cf95b0 7370048 f7afb44 4839711 7370048 de3ef7d 7370048 0e6ab0f 71c8985 f8873d7 7370048 f8873d7 7370048 3cf95b0 de3ef7d 3cf95b0 7370048 f7afb44 3cf95b0 7370048 3cf95b0 7370048 f7afb44 7370048 f7afb44 9c89976 7370048 f7afb44 7370048 f7afb44 7370048 f7afb44 7370048 bfe5a86 9370b00 f7afb44 bfe5a86 f7afb44 de3ef7d f7afb44 de3ef7d 7370048 de3ef7d 7370048 f7afb44 3cf95b0 7370048 3cf95b0 de3ef7d 7370048 f7afb44 7370048 9370b00 dfecac2 7370048 de3ef7d f7afb44 de3ef7d 7370048 f7afb44 7370048 f7afb44 7370048 f7afb44 7370048 3cf95b0 7370048 3cf95b0 7370048 9370b00 7370048 de3ef7d f7afb44 9370b00 de3ef7d 7370048 f7afb44 de3ef7d 7370048 de3ef7d 7370048 de3ef7d 7370048 f7afb44 7370048 de3ef7d 7370048 f8873d7 7370048 f7afb44 7370048 f7afb44 7370048 de3ef7d 7370048 de3ef7d 7370048 f7afb44 7370048 f7afb44 7370048 f7afb44 7370048 f7afb44 7370048 9370b00 7370048 de3ef7d 7370048 f8873d7 7370048 f8873d7 7370048 f8873d7 7370048 de3ef7d 7370048 f7afb44 7370048 f8873d7 7370048 de3ef7d 7370048 f7afb44 7370048 f8873d7 7370048 de3ef7d 7370048 f7afb44 7370048 f7afb44 7370048 f8873d7 7370048 de3ef7d 7370048 f7afb44 de3ef7d f8873d7 7370048 f7afb44 7370048 f8873d7 7370048 de3ef7d 7370048 f7afb44 7370048 f8873d7 7370048 de3ef7d 7370048 de3ef7d 7370048 ddd0e04 09a0b53 7370048 09a0b53 7370048 de3ef7d f7afb44 de3ef7d 7370048 f7afb44 7370048 3cf95b0 7370048 f7afb44 7370048 f7afb44 7370048 f7afb44 7370048 f7afb44 7370048 0e6ab0f 7370048 9370b00 7370048 f7afb44 7370048 de3ef7d 7370048 ddd0e04 7370048 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
# ------------------------------
# UniversalResearch AI System with Refinement Counter and Increased Recursion Limit
# ------------------------------
import logging
import os
import re
import hashlib
import json
import time
import sys
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Dict, Any, Optional, Sequence
import chromadb
import requests
import streamlit as st
# LangChain and LangGraph imports
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from langchain.tools.retriever import create_retriever_tool
# Increase Python's recursion limit at the very start (if needed)
sys.setrecursionlimit(10000)
# ------------------------------
# Logging Configuration
# ------------------------------
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s"
)
logger = logging.getLogger(__name__)
# ------------------------------
# State Schema Definition
# ------------------------------
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
context: Dict[str, Any]
metadata: Dict[str, Any]
# ------------------------------
# Configuration
# ------------------------------
class ResearchConfig:
"""
Generic configuration for the UniversalResearch AI System.
This configuration is designed to be applicable to any research domain.
"""
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
CHROMA_PATH = "chroma_db"
CHUNK_SIZE = 512
CHUNK_OVERLAP = 64
MAX_CONCURRENT_REQUESTS = 5
EMBEDDING_DIMENSIONS = 1536
# An optional map can be used to list pre-loaded or featured research topics.
DOCUMENT_MAP = {
"Sample Research Document 1": "Topic A Overview",
"Sample Research Document 2": "Topic B Analysis",
"Sample Research Document 3": "Topic C Innovations"
}
ANALYSIS_TEMPLATE = (
"Analyze the following research documents with scientific rigor:\n{context}\n\n"
"Provide your analysis with the following structure:\n"
"1. Key Contributions (bullet points)\n"
"2. Novel Methodologies\n"
"3. Empirical Results (with metrics)\n"
"4. Potential Applications\n"
"5. Limitations & Future Directions\n\n"
"Format your response in Markdown with LaTeX mathematical notation where applicable."
)
if not ResearchConfig.DEEPSEEK_API_KEY:
st.error(
"""**Research Portal Configuration Required**
1. Obtain your DeepSeek API key from [platform.deepseek.com](https://platform.deepseek.com/)
2. Set the secret: `DEEPSEEK_API_KEY` in your deployment settings
3. Rebuild your deployment."""
)
st.stop()
# ------------------------------
# Universal Document Processing
# ------------------------------
class UniversalDocumentManager:
"""
Manages the creation of document collections for any research domain.
Documents are split into manageable chunks and embedded using OpenAI embeddings.
"""
def __init__(self) -> None:
try:
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
logger.info("Initialized PersistentClient for Chroma.")
except Exception as e:
logger.error(f"Error initializing PersistentClient: {e}")
self.client = chromadb.Client() # Fallback to in-memory client
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
)
def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
"""
Splits documents into chunks and stores them in a Chroma collection.
"""
splitter = RecursiveCharacterTextSplitter(
chunk_size=ResearchConfig.CHUNK_SIZE,
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
separators=["\n\n", "\n", "|||"]
)
try:
docs = splitter.create_documents(documents)
logger.info(f"Created {len(docs)} document chunks for collection '{collection_name}'.")
except Exception as e:
logger.error(f"Error splitting documents: {e}")
raise e
return Chroma.from_documents(
documents=docs,
embedding=self.embeddings,
client=self.client,
collection_name=collection_name,
ids=[self._document_id(doc.page_content) for doc in docs]
)
def _document_id(self, content: str) -> str:
"""
Generates a unique document ID using a SHA256 hash combined with the current timestamp.
"""
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
# Initialize document collections for multiple research domains
udm = UniversalDocumentManager()
# Example collections β these can be updated with any research domain documents.
research_docs = udm.create_collection([
"Research Report: Novel AI Techniques in Renewable Energy",
"Academic Paper: Advances in Quantum Computing for Data Analysis",
"Survey: Emerging Trends in Biomedical Research"
], "research")
development_docs = udm.create_collection([
"Project Update: New Algorithms in Software Engineering",
"Development Report: Innovations in User Interface Design",
"Case Study: Agile Methodologies in Large-Scale Software Projects"
], "development")
# ------------------------------
# Advanced Retrieval System
# ------------------------------
class ResearchRetriever:
"""
Provides retrieval methods for research documents.
This class supports multiple domains, such as academic research and development.
"""
def __init__(self) -> None:
try:
self.research_retriever = research_docs.as_retriever(
search_type="mmr",
search_kwargs={'k': 4, 'fetch_k': 20, 'lambda_mult': 0.85}
)
self.development_retriever = development_docs.as_retriever(
search_type="similarity",
search_kwargs={'k': 3}
)
logger.info("Initialized retrievers for research and development domains.")
except Exception as e:
logger.error(f"Error initializing retrievers: {e}")
raise e
def retrieve(self, query: str, domain: str) -> List[Any]:
"""
Retrieves documents for a given query and domain.
"""
try:
if domain == "research":
return self.research_retriever.invoke(query)
elif domain == "development":
return self.development_retriever.invoke(query)
else:
logger.warning(f"Domain '{domain}' not recognized. Defaulting to research.")
return self.research_retriever.invoke(query)
except Exception as e:
logger.error(f"Retrieval error for domain '{domain}': {e}")
return []
retriever = ResearchRetriever()
# ------------------------------
# Cognitive Processing Unit
# ------------------------------
class CognitiveProcessor:
"""
Executes API requests to the DeepSeek backend using redundant parallel requests.
The responses are consolidated via a consensus mechanism.
"""
def __init__(self) -> None:
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
def process_query(self, prompt: str) -> Dict:
"""
Processes a query by sending multiple API requests in parallel.
"""
futures = []
for _ in range(3): # Triple redundancy for improved reliability
futures.append(self.executor.submit(self._execute_api_request, prompt))
results = []
for future in as_completed(futures):
try:
results.append(future.result())
except Exception as e:
logger.error(f"Error in API request: {e}")
st.error(f"Processing Error: {str(e)}")
return self._consensus_check(results)
def _execute_api_request(self, prompt: str) -> Dict:
"""
Executes a single API request to the DeepSeek endpoint.
"""
headers = {
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
"Content-Type": "application/json",
"X-Research-Session": self.session_id
}
payload = {
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Respond as a Senior Researcher:\n{prompt}"
}],
"temperature": 0.7,
"max_tokens": 1500,
"top_p": 0.9
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=payload,
timeout=45
)
response.raise_for_status()
logger.info("DeepSeek API request successful.")
return response.json()
except requests.exceptions.RequestException as e:
logger.error(f"DeepSeek API request failed: {e}")
return {"error": str(e)}
def _consensus_check(self, results: List[Dict]) -> Dict:
"""
Consolidates multiple API responses by selecting the one with the most content.
"""
valid_results = [r for r in results if "error" not in r]
if not valid_results:
logger.error("All API requests failed.")
return {"error": "All API requests failed"}
return max(valid_results, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
# ------------------------------
# Research Workflow Engine
# ------------------------------
class ResearchWorkflow:
"""
Defines a multi-step research workflow using a state graph.
This workflow is designed to be domain-agnostic, working for any research area.
"""
def __init__(self) -> None:
self.processor = CognitiveProcessor()
self.workflow = StateGraph(AgentState)
self._build_workflow()
self.app = self.workflow.compile()
def _build_workflow(self) -> None:
# Define workflow nodes
self.workflow.add_node("ingest", self.ingest_query)
self.workflow.add_node("retrieve", self.retrieve_documents)
self.workflow.add_node("analyze", self.analyze_content)
self.workflow.add_node("validate", self.validate_output)
self.workflow.add_node("refine", self.refine_results)
# Set entry point and define transitions
self.workflow.set_entry_point("ingest")
self.workflow.add_edge("ingest", "retrieve")
self.workflow.add_edge("retrieve", "analyze")
self.workflow.add_conditional_edges(
"analyze",
self._quality_check,
{"valid": "validate", "invalid": "refine"}
)
self.workflow.add_edge("validate", END)
self.workflow.add_edge("refine", "retrieve")
def ingest_query(self, state: AgentState) -> Dict:
"""
Ingests the research query and initializes the refinement counter.
"""
try:
query = state["messages"][-1].content
new_context = {"raw_query": query, "refine_count": 0}
logger.info("Query ingested.")
return {
"messages": [AIMessage(content="Query ingested successfully")],
"context": new_context,
"metadata": {"timestamp": datetime.now().isoformat()}
}
except Exception as e:
return self._error_state(f"Ingestion Error: {str(e)}")
def retrieve_documents(self, state: AgentState) -> Dict:
"""
Retrieves research documents for the given query.
"""
try:
query = state["context"]["raw_query"]
docs = retriever.retrieve(query, "research")
logger.info(f"Retrieved {len(docs)} documents for query.")
return {
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
"context": {"documents": docs, "retrieval_time": time.time(), "refine_count": state["context"].get("refine_count", 0)}
}
except Exception as e:
return self._error_state(f"Retrieval Error: {str(e)}")
def analyze_content(self, state: AgentState) -> Dict:
"""
Analyzes the retrieved research documents using the DeepSeek API.
"""
try:
docs = state["context"].get("documents", [])
docs_text = "\n\n".join([d.page_content for d in docs])
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs_text)
response = self.processor.process_query(prompt)
if "error" in response:
return self._error_state(response["error"])
logger.info("Content analysis completed.")
return {
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": {"analysis": response, "refine_count": state["context"].get("refine_count", 0)}
}
except Exception as e:
return self._error_state(f"Analysis Error: {str(e)}")
def validate_output(self, state: AgentState) -> Dict:
"""
Validates the analysis report for technical accuracy and consistency.
"""
analysis = state["messages"][-1].content
validation_prompt = (
f"Validate the following research analysis:\n{analysis}\n\n"
"Check for:\n1. Technical accuracy\n2. Adequate citation support\n3. Logical consistency\n4. Methodological soundness\n\n"
"Respond with 'VALID' or 'INVALID'."
)
response = self.processor.process_query(validation_prompt)
logger.info("Output validation completed.")
return {
"messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")]
}
def refine_results(self, state: AgentState) -> Dict:
"""
Refines the analysis report if validation fails.
Increments the refinement counter to avoid infinite loops.
"""
current_count = state["context"].get("refine_count", 0)
state["context"]["refine_count"] = current_count + 1
logger.info(f"Refinement iteration: {state['context']['refine_count']}")
refinement_prompt = (
f"Refine this analysis:\n{state['messages'][-1].content}\n\n"
"Improve by enhancing technical precision, empirical grounding, and theoretical coherence."
)
response = self.processor.process_query(refinement_prompt)
logger.info("Refinement completed.")
return {
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
def _quality_check(self, state: AgentState) -> str:
"""
Checks whether the analysis report is valid.
Forces a valid state if the refinement counter exceeds a preset threshold.
"""
refine_count = state["context"].get("refine_count", 0)
if refine_count >= 3:
logger.warning("Refinement limit reached. Forcing valid outcome to prevent infinite recursion.")
return "valid"
content = state["messages"][-1].content
quality = "valid" if "VALID" in content else "invalid"
logger.info(f"Quality check returned: {quality}")
return quality
def _error_state(self, message: str) -> Dict:
"""
Returns a standardized error state.
"""
logger.error(message)
return {
"messages": [AIMessage(content=f"β {message}")],
"context": {"error": True},
"metadata": {"status": "error"}
}
# ------------------------------
# Research Interface (Streamlit UI)
# ------------------------------
class ResearchInterface:
"""
Provides a Streamlit-based interface for executing the UniversalResearch AI workflow.
The interface is domain-agnostic, making it suitable for research in any field.
"""
def __init__(self) -> None:
self.workflow = ResearchWorkflow()
self._initialize_interface()
def _initialize_interface(self) -> None:
st.set_page_config(
page_title="UniversalResearch AI",
layout="wide",
initial_sidebar_state="expanded"
)
self._inject_styles()
self._build_sidebar()
self._build_main_interface()
def _inject_styles(self) -> None:
st.markdown(
"""
<style>
:root {
--primary: #2ecc71;
--secondary: #3498db;
--background: #0a0a0a;
--text: #ecf0f1;
}
.stApp {
background: var(--background);
color: var(--text);
font-family: 'Roboto', sans-serif;
}
.stTextArea textarea {
background: #1a1a1a !important;
color: var(--text) !important;
border: 2px solid var(--secondary);
border-radius: 8px;
padding: 1rem;
}
.stButton>button {
background: linear-gradient(135deg, var(--primary), var(--secondary));
border: none;
border-radius: 8px;
padding: 1rem 2rem;
transition: all 0.3s;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
}
.stExpander {
background: #1a1a1a;
border: 1px solid #2a2a2a;
border-radius: 8px;
margin: 1rem 0;
}
</style>
""",
unsafe_allow_html=True
)
def _build_sidebar(self) -> None:
with st.sidebar:
st.title("π Research Database")
st.subheader("Featured Research Topics")
# Display featured research topics from the DOCUMENT_MAP.
for title, short in ResearchConfig.DOCUMENT_MAP.items():
with st.expander(short):
st.markdown(f"```\n{title}\n```")
st.subheader("Analysis Metrics")
st.metric("Vector Collections", 2)
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
def _build_main_interface(self) -> None:
st.title("π§ UniversalResearch AI")
query = st.text_area(
"Research Query:",
height=200,
placeholder="Enter a research question or topic from any domain..."
)
if st.button("Execute Analysis", type="primary"):
self._execute_analysis(query)
def _execute_analysis(self, query: str) -> None:
try:
with st.spinner("Initializing Universal Analysis..."):
# Invoke the workflow with an increased recursion limit configuration.
results = self.workflow.app.stream({
"messages": [HumanMessage(content=query)],
"context": {},
"metadata": {}
}, {"recursion_limit": 100})
for event in results:
self._render_event(event)
st.success("β
Analysis Completed Successfully")
except Exception as e:
logger.error(f"Workflow execution failed: {e}")
st.error(
f"""**Analysis Failed**
{str(e)}
Potential issues:
- Complex query structure
- Document correlation failure
- Temporal processing constraints"""
)
def _render_event(self, event: Dict) -> None:
if 'ingest' in event:
with st.container():
st.success("β
Query Ingested")
elif 'retrieve' in event:
with st.container():
docs = event['retrieve']['context'].get('documents', [])
st.info(f"π Retrieved {len(docs)} documents")
with st.expander("View Retrieved Documents", expanded=False):
for idx, doc in enumerate(docs, start=1):
st.markdown(f"**Document {idx}**")
st.code(doc.page_content, language='text')
elif 'analyze' in event:
with st.container():
content = event['analyze']['messages'][0].content
with st.expander("Research Analysis Report", expanded=True):
st.markdown(content)
elif 'validate' in event:
with st.container():
content = event['validate']['messages'][0].content
if "VALID" in content:
st.success("β
Validation Passed")
with st.expander("View Validated Analysis", expanded=True):
st.markdown(content.split("Validation:")[0])
else:
st.warning("β οΈ Validation Issues Detected")
with st.expander("View Validation Details", expanded=True):
st.markdown(content)
if __name__ == "__main__":
ResearchInterface()
|