Spaces:
Sleeping
Sleeping
File size: 5,017 Bytes
57b4d6e 9643386 133fb5d 313728a 133fb5d 313728a 133fb5d 3d80884 93e8de0 133fb5d 3d80884 fc38a48 9643386 313728a fc38a48 313728a fc38a48 313728a fc38a48 313728a fc38a48 313728a fc38a48 313728a 9643386 313728a 9643386 313728a 57b4d6e 9643386 313728a 9643386 133fb5d 3d80884 133fb5d 3d80884 133fb5d 594af3a fc38a48 7660b5c 133fb5d 3d80884 133fb5d fc38a48 133fb5d fc38a48 9643386 133fb5d 7660b5c fc38a48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
import pandas as pd
import numpy as np
import joblib
from skimage.measure import shannon_entropy
from skimage.color import rgb2hsv
from scipy.ndimage import generic_filter
import cv2
from PIL import Image
# Function to extract features from the image
def extract_features(image):
# Convert PIL image to NumPy array
image = np.array(image)
# Extract RGB means
meanr = np.mean(image[:, :, 0]) # Red channel
meang = np.mean(image[:, :, 1]) # Green channel
meanb = np.mean(image[:, :, 2]) # Blue channel
# Convert to HSI and compute HHR
hsv_image = rgb2hsv(image)
hue = hsv_image[:, :, 0]
high_hue_pixels = np.sum(hue > 0.95)
total_pixels = hue.size
HHR = high_hue_pixels / total_pixels
# Convert to Grayscale
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Compute Entropy
Ent = shannon_entropy(gray_image)
# Compute Brightness
B = np.mean(gray_image)
# Sliding window for gray-level features
def g1_filter(window):
return window[4] - np.min(window)
def g2_filter(window):
return np.max(window) - window[4]
def g3_filter(window):
return window[4] - np.mean(window)
def g4_filter(window):
return np.std(window)
def g5_filter(window):
return window[4]
# Apply filters with 3x3 window
g1 = generic_filter(gray_image, g1_filter, size=3).mean()
g2 = generic_filter(gray_image, g2_filter, size=3).mean()
g3 = generic_filter(gray_image, g3_filter, size=3).mean()
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
# Return features
return {
"meanr": meanr,
"meang": meang,
"meanb": meanb,
"HHR": HHR,
"Ent": Ent,
"B": B,
"g1": g1,
"g2": g2,
"g3": g3,
"g4": g4,
"g5": g5,
}
# Function to check if the image is a valid file format
def check_image_format(image):
try:
# Try opening the image using PIL
img = Image.open(image)
img.verify() # Verify if it's a valid image file
return True
except Exception as e:
print(f"Error opening image: {e}")
return False
# Function to predict hemoglobin value
def predict_hemoglobin(age, gender, image):
try:
# Check if the image file is valid
if not check_image_format(image):
return "Error: The uploaded image file is not recognized or is corrupt. Please upload an image in JPG, PNG, BMP, or GIF format."
# Extract features from the image
features = extract_features(image)
# Ensure gender is encoded correctly (0 for female, 1 for male)
features['Gender'] = 1 if gender.lower() == 'M' else 0
features['Age'] = age
# Create a DataFrame for features (do not include Hgb, as it's the predicted value)
features_df = pd.DataFrame([features])
# Load the trained model, scaler, and label encoder
svr_model = joblib.load('svr_model(1).pkl') # Replace with the actual path to your model file
scaler = joblib.load('minmax_scaler.pkl') # Replace with the actual path to your scaler file
# Ensure that features_df matches the expected training feature set (without 'Hgb')
expected_columns = ['meanr', 'meang', 'meanb', 'HHR', 'Ent', 'B', 'g1', 'g2', 'g3', 'g4', 'g5', 'Age', 'Gender']
for col in expected_columns:
if col not in features_df:
features_df[col] = 0 # Or some default value to match the expected columns.
features_df = features_df[expected_columns] # Ensure the correct order of columns
# Apply scaling (do not include 'Hgb' as it is the target)
features_df_scaled = scaler.transform(features_df)
# Predict hemoglobin using the trained SVR model
hemoglobin = svr_model.predict(features_df_scaled)[0]
return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
except Exception as e:
print(f"An error occurred during prediction: {e}")
return "An error occurred during prediction. Please try again."
# Gradio Interface setup
def create_gradio_interface():
# Define the inputs and outputs for the Gradio interface
image_input = gr.Image(type="pil", label="Image (Upload Image)", interactive=True)
age_input = gr.Number(label="Age", value=25, precision=0)
gender_input = gr.Radio(choices=["Male", "Female"], label="Gender", value="Male")
# Set up the Gradio interface with the prediction function
iface = gr.Interface(fn=predict_hemoglobin,
inputs=[age_input, gender_input, image_input],
outputs="text",
live=True,
title="Hemoglobin Prediction")
iface.launch(share=True) # Set share=True to create a public link
# Run the Gradio app
if __name__ == "__main__":
create_gradio_interface() |