File size: 11,830 Bytes
d83f194
 
 
 
 
 
 
 
 
1ddba8e
 
851795f
 
1ddba8e
 
 
 
 
d83f194
359bd0c
d83f194
2da62f5
d83f194
 
 
 
 
 
1acfd2b
d83f194
 
 
1acfd2b
d83f194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40f675a
d83f194
 
40f675a
 
1acfd2b
40f675a
 
1acfd2b
40f675a
 
 
 
 
 
1acfd2b
40f675a
 
 
 
 
 
1acfd2b
40f675a
 
 
 
 
1acfd2b
40f675a
d83f194
 
 
 
359bd0c
d83f194
 
1acfd2b
d83f194
1acfd2b
359bd0c
 
1acfd2b
d83f194
1ddba8e
 
359bd0c
1acfd2b
359bd0c
d83f194
 
 
 
 
 
 
359bd0c
d83f194
 
 
 
359bd0c
 
1acfd2b
 
d83f194
 
 
 
 
 
 
 
 
 
 
1acfd2b
d83f194
1acfd2b
d83f194
1acfd2b
1ddba8e
359bd0c
1ddba8e
1acfd2b
d83f194
 
1acfd2b
40f675a
d83f194
 
 
 
40f675a
d83f194
40f675a
 
1acfd2b
40f675a
 
1acfd2b
40f675a
 
 
 
 
 
 
 
 
1acfd2b
40f675a
d83f194
 
 
 
9c22744
 
 
 
 
359bd0c
 
9c22744
 
 
 
 
 
359bd0c
 
9c22744
1acfd2b
9c22744
 
1acfd2b
9c22744
 
 
 
359bd0c
 
9c22744
 
 
359bd0c
 
9c22744
 
1acfd2b
d83f194
359bd0c
1acfd2b
d83f194
 
1acfd2b
d83f194
359bd0c
1acfd2b
40f675a
d83f194
1acfd2b
d83f194
359bd0c
73cc4bb
1acfd2b
f7c1877
d83f194
 
 
1acfd2b
359bd0c
1acfd2b
 
 
 
 
 
 
 
 
 
 
2da62f5
73cc4bb
 
 
2da62f5
73cc4bb
 
1acfd2b
 
2da62f5
1acfd2b
 
 
 
 
 
 
2da62f5
73cc4bb
 
 
 
 
2da62f5
1acfd2b
f7c1877
2da62f5
d83f194
 
f7c1877
d83f194
 
 
40f675a
d83f194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
851795f
359bd0c
851795f
 
 
359bd0c
851795f
 
 
 
d83f194
359bd0c
1acfd2b
 
 
 
d83f194
 
40f675a
d83f194
359bd0c
d83f194
1acfd2b
d83f194
40f675a
 
359bd0c
d83f194
1acfd2b
d83f194
 
1acfd2b
359bd0c
d83f194
1acfd2b
 
ca21317
1acfd2b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import gradio as gr
import requests
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
import io
import matplotlib as mpl
import matplotlib.font_manager as fm
import tempfile
import os
import yfinance as yf
import logging
from datetime import datetime, timedelta

# 設置日誌
logging.basicConfig(level=logging.INFO,
                   format='%(asctime)s - %(levelname)s - %(message)s')

# 字體設置
def setup_font():
    try:
        url_font = "https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_"
        response_font = requests.get(url_font)
        
        with tempfile.NamedTemporaryFile(delete=False, suffix='.ttf') as tmp_file:
            tmp_file.write(response_font.content)
            tmp_file_path = tmp_file.name
        
        fm.fontManager.addfont(tmp_file_path)
        mpl.rc('font', family='Taipei Sans TC Beta')
    except Exception as e:
        logging.error(f"字體設置失敗: {str(e)}")
        # 使用備用字體
        mpl.rc('font', family='SimHei')

# 網路請求設置
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
    'Accept-Language': 'zh-TW,zh;q=0.9,en-US;q=0.8,en;q=0.7',
    'Accept-Encoding': 'gzip, deflate, br',
    'Connection': 'keep-alive',
    'Upgrade-Insecure-Requests': '1'
}

def fetch_stock_categories():
    try:
        url = "https://tw.stock.yahoo.com/class/"
        response = requests.get(url, headers=headers, timeout=10)
        response.raise_for_status()
        
        soup = BeautifulSoup(response.text, 'html.parser')
        main_categories = soup.find_all('div', class_='C($c-link-text)')
        
        data = []
        for category in main_categories:
            main_category_name = category.find('h2', class_="Fw(b) Fz(24px) Lh(32px)")
            if main_category_name:
                main_category_name = main_category_name.text.strip()
                sub_categories = category.find_all('a', class_='Fz(16px) Lh(1.5) C($c-link-text) C($c-active-text):h Fw(b):h Td(n)')
                
                for sub_category in sub_categories:
                    data.append({
                        '台股': main_category_name,
                        '類股': sub_category.text.strip(),
                        '網址': "https://tw.stock.yahoo.com" + sub_category['href']
                    })
        
        category_dict = {}
        for item in data:
            if item['台股'] not in category_dict:
                category_dict[item['台股']] = []
            category_dict[item['台股']].append({'類股': item['類股'], '網址': item['網址']})
        
        return category_dict
    except Exception as e:
        logging.error(f"獲取股票類別失敗: {str(e)}")
        return {}

# 股票預測模型類別
class StockPredictor:
    def __init__(self):
        self.model = None
        self.scaler = MinMaxScaler()
        
    def prepare_data(self, df, selected_features):
        scaled_data = self.scaler.fit_transform(df[selected_features])
        
        X, y = [], []
        for i in range(len(scaled_data) - 1):
            X.append(scaled_data[i])
            y.append(scaled_data[i+1])
        
        return np.array(X).reshape(-1, 1, len(selected_features)), np.array(y)
    
    def build_model(self, input_shape):
        model = Sequential([
            LSTM(100, activation='relu', input_shape=input_shape, return_sequences=True),
            Dropout(0.2),
            LSTM(50, activation='relu'),
            Dropout(0.2),
            Dense(input_shape[1])
        ])
        model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
        return model
    
    def train(self, df, selected_features):
        X, y = self.prepare_data(df, selected_features)
        self.model = self.build_model((1, X.shape[2]))
        history = self.model.fit(
            X, y,
            epochs=50,
            batch_size=32,
            validation_split=0.2,
            verbose=0
        )
        return history
    
    def predict(self, last_data, n_days):
        predictions = []
        current_data = last_data.copy()
        
        for _ in range(n_days):
            next_day = self.model.predict(current_data.reshape(1, 1, -1), verbose=0)
            predictions.append(next_day[0])
            
            current_data = current_data.flatten()
            current_data[:len(next_day[0])] = next_day[0]
            current_data = current_data.reshape(1, -1)
        
        return np.array(predictions)

# Gradio界面函數
def update_stocks(category):
    if not category or category not in category_dict:
        return []
    return [item['類股'] for item in category_dict[category]]

def get_stock_items(url):
    try:
        response = requests.get(url, headers=headers, timeout=10)
        response.raise_for_status()
        
        soup = BeautifulSoup(response.text, 'html.parser')
        stock_items = soup.find_all('li', class_='List(n)')
        
        stocks_dict = {}
        for item in stock_items:
            stock_name = item.find('div', class_='Lh(20px) Fw(600) Fz(16px) Ell')
            stock_code = item.find('span', class_='Fz(14px) C(#979ba7) Ell')
            if stock_name and stock_code:
                full_code = stock_code.text.strip()
                display_code = full_code.split('.')[0]
                display_name = f"{stock_name.text.strip()}{display_code}"
                stocks_dict[display_name] = full_code
        
        return stocks_dict
    except Exception as e:
        logging.error(f"獲取股票項目失敗: {str(e)}")
        return {}

def update_category(category):
    stocks = update_stocks(category)
    return {
        stock_dropdown: gr.update(choices=stocks, value=None),
        stock_item_dropdown: gr.update(choices=[], value=None),
        stock_plot: gr.update(value=None),
        status_output: gr.update(value="")
    }

def update_stock(category, stock):
    if not category or not stock:
        return {
            stock_item_dropdown: gr.update(choices=[], value=None),
            stock_plot: gr.update(value=None),
            status_output: gr.update(value="")
        }
    
    url = next((item['網址'] for item in category_dict.get(category, [])
                if item['類股'] == stock), None)
    
    if url:
        stock_items = get_stock_items(url)
        return {
            stock_item_dropdown: gr.update(choices=list(stock_items.keys()), value=None),
            stock_plot: gr.update(value=None),
            status_output: gr.update(value="")
        }
    return {
        stock_item_dropdown: gr.update(choices=[], value=None),
        stock_plot: gr.update(value=None),
        status_output: gr.update(value="")
    }

def predict_stock(category, stock, stock_item, period, selected_features):
    if not all([category, stock, stock_item]):
        return gr.update(value=None), "請選擇產業類別、類股和股票"
    
    try:
        url = next((item['網址'] for item in category_dict.get(category, [])
                   if item['類股'] == stock), None)
        if not url:
            return gr.update(value=None), "無法獲取類股網址"
        
        stock_items = get_stock_items(url)
        stock_code = stock_items.get(stock_item, "")
        
        if not stock_code:
            return gr.update(value=None), "無法獲取股票代碼"
        
        # 下載股票數據,根據用戶選擇的時間範圍
        df = yf.download(stock_code, period=period)
        if df.empty:
            raise ValueError("無法獲取股票數據")
        
        # 預測
        predictor = StockPredictor()
        predictor.train(df, selected_features)
        
        last_data = predictor.scaler.transform(df[selected_features].iloc[-1:].values)
        predictions = predictor.predict(last_data[0], 5)
        
        # 反轉預測結果
        last_original = df[selected_features].iloc[-1].values
        predictions_original = predictor.scaler.inverse_transform(
            np.vstack([last_data, predictions])
        )
        all_predictions = np.vstack([last_original, predictions_original[1:]])
        
        # 創建日期索引
        dates = [datetime.now() + timedelta(days=i) for i in range(6)]
        date_labels = [d.strftime('%m/%d') for d in dates]
        
        # 繪圖
        fig, ax = plt.subplots(figsize=(14, 7))
        colors = ['#FF9999', '#66B2FF']
        labels = [f'預測{feature}' for feature in selected_features]
        
        for i, (label, color) in enumerate(zip(labels, colors)):
            ax.plot(date_labels, all_predictions[:, i], label=label,
                   marker='o', color=color, linewidth=2)
            for j, value in enumerate(all_predictions[:, i]):
                ax.annotate(f'{value:.2f}', (date_labels[j], value),
                           textcoords="offset points", xytext=(0,10),
                           ha='center', va='bottom')
        
        ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
        ax.set_xlabel('日期', labelpad=10)
        ax.set_ylabel('股價', labelpad=10)
        ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
        ax.grid(True, linestyle='--', alpha=0.7)
        
        plt.tight_layout()
        return gr.update(value=fig), "預測成功"
        
    except Exception as e:
        logging.error(f"預測過程發生錯誤: {str(e)}")
        return gr.update(value=None), f"預測過程發生錯誤: {str(e)}"

# 初始化
setup_font()
category_dict = fetch_stock_categories()
categories = list(category_dict.keys())

# Gradio界面
with gr.Blocks() as demo:
    gr.Markdown("# 台股預測系統")
    with gr.Row():
        with gr.Column():
            category_dropdown = gr.Dropdown(
                choices=categories,
                label="產業類別",
                value=None
            )
            stock_dropdown = gr.Dropdown(
                choices=[],
                label="類股",
                value=None
            )
            stock_item_dropdown = gr.Dropdown(
                choices=[],
                label="股票",
                value=None
            )
            period_dropdown = gr.Dropdown(
                choices=["1y", "6mo", "3mo", "1mo"],
                label="抓取時間範圍",
                value="1y"
            )
            features_checkbox = gr.CheckboxGroup(
                choices=['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'],
                label="選擇要用於預測的特徵",
                value=['Open', 'Close']
            )
            predict_button = gr.Button("開始預測", variant="primary")
            status_output = gr.Textbox(label="狀態", interactive=False)
    
    with gr.Row():
        stock_plot = gr.Plot(label="股價預測圖")
    
    # 事件綁定
    category_dropdown.change(
        update_category,
        inputs=[category_dropdown],
        outputs=[stock_dropdown, stock_item_dropdown, stock_plot, status_output]
    )
    
    stock_dropdown.change(
        update_stock,
        inputs=[category_dropdown, stock_dropdown],
        outputs=[stock_item_dropdown, stock_plot, status_output]
    )
    
    predict_button.click(
        predict_stock,
        inputs=[category_dropdown, stock_dropdown, stock_item_dropdown, period_dropdown, features_checkbox],
        outputs=[stock_plot, status_output]
    )

# 啟動應用
if __name__ == "__main__":
    demo.launch(share=False)