File size: 17,563 Bytes
e46c16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1250d8b
 
 
 
 
e46c16c
1250d8b
e46c16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1250d8b
 
e46c16c
 
 
 
 
 
 
 
 
 
 
 
1250d8b
 
e46c16c
1250d8b
 
 
 
e46c16c
1250d8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e46c16c
 
 
 
 
 
 
 
 
 
1250d8b
 
e46c16c
 
 
1250d8b
 
e46c16c
 
 
1250d8b
e46c16c
 
 
 
 
 
 
1250d8b
 
e46c16c
 
 
 
 
1250d8b
e46c16c
 
 
 
 
1250d8b
e46c16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd219e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ed4acb
74dec5e
 
 
c38acde
816fe7b
fd219e6
1ed4acb
45af05b
 
 
22d404b
 
6a50739
ab9c147
1250d8b
43f241c
1ed4acb
74dec5e
 
fd219e6
 
74dec5e
fd219e6
74dec5e
 
 
dde5004
 
 
 
fd219e6
b019779
a6cdf41
d3fd89d
f3e1197
1250d8b
 
 
 
49e53ed
61fe446
c38acde
 
 
 
 
1250d8b
 
fd219e6
ecc8d7a
 
fd219e6
c38acde
fd219e6
c38acde
f3e1197
 
c38acde
 
 
 
 
fd219e6
f3e1197
 
fd219e6
f3e1197
fd219e6
f3e1197
 
 
 
e46c16c
85185f1
fd219e6
f3e1197
 
 
 
fd219e6
f3e1197
 
fd219e6
 
f3e1197
 
9469195
 
fd219e6
3f45d48
95e085e
 
fd219e6
95e085e
 
 
 
fd219e6
95e085e
 
 
 
fd219e6
95e085e
 
fd219e6
3f45d48
 
fd219e6
 
f3e1197
 
 
 
fd219e6
f3e1197
 
 
 
e46c16c
fd219e6
f3e1197
fd219e6
 
7f5102c
fd219e6
e46c16c
ab9c147
 
 
 
 
fd219e6
4b58467
e46c16c
 
381e9cd
fd219e6
381e9cd
b019779
7c817a1
e46c16c
f3e1197
fd219e6
3c31877
 
e46c16c
b77b847
1250d8b
f3e1197
1250d8b
d30e80d
 
d4e098f
 
74dec5e
 
b80583c
 
1bba452
74dec5e
1688328
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# import gradio as gr
# import numpy as np
# import cv2 as cv
# import requests
# import time
# import os

# host = os.environ.get("host")
# code = os.environ.get("code")
# model_llm = os.environ.get("model")
# content = os.environ.get("content")
# state = os.environ.get("state")
# system = os.environ.get("system")
# auth = os.environ.get("auth")
# data = None
# model = None
# image = None
# prediction = None
# labels = None

# print('START')
# np.set_printoptions(suppress=True)

# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)

# with open("labels.txt", "r") as file:
#     labels = file.read().splitlines()

# messages = [
#     {"role": "system", "content": system}
# ]

# def classify(UserInput, Image, Textbox2, Textbox3):
#     if Textbox3 == code:
#         print("Image:  ", Image)
#         if Image is not None:
#             output = []
#             image_data = np.array(Image)
#             image_data = cv.resize(image_data, (224, 224))
#             image_array = np.asarray(image_data)
#             normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
#             data[0] = normalized_image_array
        
#             import tensorflow as tf
#             model = tf.keras.models.load_model('keras_model.h5')
        
#             prediction = model.predict(data)
            
#             max_label_index = None
#             max_prediction_value = -1
    
#             print('Prediction')
    
#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(UserInput)
#             messages.append({"role": "user", "content": UserInput})
        
#             for i, label in enumerate(labels):
#                 prediction_value = float(prediction[0][i])
#                 rounded_value = round(prediction_value, 2)
#                 print(f'{label}: {rounded_value}')
        
#                 if prediction_value > max_prediction_value:
#                     max_label_index = i
#                     max_prediction_value = prediction_value 
        
#             if max_label_index is not None:
#                 max_label = labels[max_label_index].split(' ', 1)[1]
#                 max_rounded_prediction = round(max_prediction_value, 2)
#                 print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
    
#                 time.sleep(1)
#                 if max_rounded_prediction > 0.5:
#                     print("\nWays to dispose of this waste: " + max_label)
#                     messages.append({"role": "user", "content": content + " " + max_label})
        
#                     headers = {
#                         "Content-Type": "application/json",
#                         "Authorization": f"Bearer {auth}"
#                     }
            
#                     response = requests.post(host, headers=headers, json={
#                         "messages": messages,
#                         "model": model_llm
#                     }).json()
                    
#                     reply = response["choices"][0]["message"]["content"]
#                     messages.append({"role": "assistant", "content": reply})
                    
#                     output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
#                 elif max_rounded_prediction < 0.5:
#                     output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
            
#             return output

#         else:
#             output = []
            
#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(UserInput)
        
#             for i in Textbox2_edited:
#                 messages.append(
#                     {"role": "user", "content": i}
#             )
            
#             print("messages after appending:", messages)
        
#             time.sleep(1)
#             messages.append({"role": "user", "content": UserInput})

#             headers = {
#                 "Content-Type": "application/json",
#                 "Authorization": f"Bearer {auth}"
#             }
    
#             response = requests.post(host, headers=headers, json={
#                 "messages": messages,
#                 "model": model_llm
#             }).json()
            
#             reply = response["choices"][0]["message"]["content"]
#             messages.append({"role": "assistant", "content": reply})

#             output.append({"Mode": "Chat", "content": reply})
            
#             return output

#     else:
#         return "Unauthorized"

# user_inputs = [
#     gr.Textbox(label="User Input", type="text"),
#     gr.Image(),
#     gr.Textbox(label="Textbox2", type="text"),
#     gr.Textbox(label="Textbox3", type="password")
# ]

# iface = gr.Interface(
#     fn=classify,
#     inputs=user_inputs,
#     outputs=gr.outputs.JSON(),
#     title="Classifier",
# )
# iface.launch()


# import gradio as gr
# import numpy as np
# import cv2 as cv
# import requests
# import time
# import os

# host = os.environ.get("host")
# code = os.environ.get("code")
# model_llm = os.environ.get("model")
# content = os.environ.get("content")
# state = os.environ.get("state")
# system = os.environ.get("system")
# auth = os.environ.get("auth")
# auth2 = os.environ.get("auth2")
# data = None
# model = None
# image = None
# prediction = None
# labels = None

# print('START')
# np.set_printoptions(suppress=True)

# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)

# with open("labels.txt", "r") as file:
#     labels = file.read().splitlines()

# messages = [
#     {"role": "system", "content": system}
# ]

# def classify(platform,UserInput, Image, Textbox2, Textbox3):
#     if Textbox3 == code:
#         if Image is not None:
#             output = []
#             headers = {
#                 "Authorization": f"Bearer {auth2}"
#             }
#             if platform == "wh":
#                 get_image = requests.get(Image, headers=headers)
#                 print(get_image.content)
#             elif platform == "web":
#                 print("WEB")
#             else:
#                 pass
#             image_data = np.array(get_image)
#             image_data = cv.resize(image_data, (224, 224))
#             image_array = np.asarray(image_data)
#             normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
#             data[0] = normalized_image_array
        
#             import tensorflow as tf
#             model = tf.keras.models.load_model('keras_model.h5')
        
#             prediction = model.predict(data)
            
#             max_label_index = None
#             max_prediction_value = -1
    
#             print('Prediction')
    
#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(UserInput)
#             messages.append({"role": "user", "content": UserInput})
        
#             for i, label in enumerate(labels):
#                 prediction_value = float(prediction[0][i])
#                 rounded_value = round(prediction_value, 2)
#                 print(f'{label}: {rounded_value}')
        
#                 if prediction_value > max_prediction_value:
#                     max_label_index = i
#                     max_prediction_value = prediction_value 
        
#             if max_label_index is not None:
#                 max_label = labels[max_label_index].split(' ', 1)[1]
#                 max_rounded_prediction = round(max_prediction_value, 2)
#                 print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
    
#                 time.sleep(1)
#                 if max_rounded_prediction > 0.5:
#                     print("\nWays to dispose of this waste: " + max_label)
#                     messages.append({"role": "user", "content": content + " " + max_label})
        
#                     headers = {
#                         "Content-Type": "application/json",
#                         "Authorization": f"Bearer {auth}"
#                     }
            
#                     response = requests.post(host, headers=headers, json={
#                         "messages": messages,
#                         "model": model_llm
#                     }).json()
                    
#                     reply = response["choices"][0]["message"]["content"]
#                     messages.append({"role": "assistant", "content": reply})
                    
#                     output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
#                 elif max_rounded_prediction < 0.5:
#                     output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
            
#             return output

#         else:
#             output = []
            
#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(UserInput)
        
#             for i in Textbox2_edited:
#                 messages.append(
#                     {"role": "user", "content": i}
#             )
            
#             print("messages after appending:", messages)
        
#             time.sleep(1)
#             messages.append({"role": "user", "content": UserInput})

#             headers = {
#                 "Content-Type": "application/json",
#                 "Authorization": f"Bearer {auth}"
#             }
    
#             response = requests.post(host, headers=headers, json={
#                 "messages": messages,
#                 "model": model_llm
#             }).json()
            
#             reply = response["choices"][0]["message"]["content"]
#             messages.append({"role": "assistant", "content": reply})

#             output.append({"Mode": "Chat", "content": reply})
            
#             return output

#     else:
#         return "Unauthorized"

# user_inputs = [
#     gr.Textbox(label="Platform", type="text"),
#     gr.Textbox(label="User Input", type="text"),
#     gr.Textbox(label="Image", type="text"),
#     gr.Textbox(label="Textbox2", type="text"),
#     gr.Textbox(label="Textbox3", type="password")
# ]

# iface = gr.Interface(
#     fn=classify,
#     inputs=user_inputs,
#     outputs=gr.outputs.JSON(),
#     title="Classifier",
# )
# iface.launch()


import gradio as gr
import numpy as np
import cv2 as cv
import requests
from PIL import Image
import os
import tensorflow as tf

host = os.environ.get("host")
code = os.environ.get("code")
model_llm = os.environ.get("model")
content = os.environ.get("content")
state = os.environ.get("state")
system = os.environ.get("system")
auth = os.environ.get("auth")
auth2 = os.environ.get("auth2")
data = None

np.set_printoptions(suppress=True)

# Load the model outside of the function
model = tf.keras.models.load_model('keras_model.h5')

# Load labels from a file
with open("labels.txt", "r") as file:
    labels = file.read().splitlines()

messages = [
    {"role": "system", "content": system}
]

def classify(platform, UserInput, Image, Textbox2, Textbox3):
    if Textbox3 == code:
        imageData = None
        if Image is not None:
            output = []
            headers = {
                "Authorization": f"Bearer {auth2}"
            }
            if platform == "wh":
                get_image = requests.get(Image, headers=headers)
                if get_image.status_code == 200:
                    # print(get_image.content)
                    # imageData = cv.imdecode(np.asarray(bytearray(get_image.content), dtype="uint8"), cv.IMREAD_COLOR)
                    image_bytes = get_image.content
                    image = Image.open(io.BytesIO(image_bytes))
                    image_data = cv.cvtColor(np.array(image), cv.COLOR_RGB2BGR)
            elif platform == "web":
                print("WEB")
                # Handle web case if needed
            else:
                pass

            image_data = cv.resize(image_data, (224, 224))
            normalized_image_array = (image_data.astype(np.float32) / 127.0) - 1
            data = np.zeros((1, 224, 224, 3))
            data[0] = normalized_image_array
            prediction = model.predict(data)
            # image_data = cv.resize(imageData, (224, 224))
            # normalized_image_array = (image_data.astype(np.float32) / 127.0) - 1
            # data[0] = normalized_image_array

            # prediction = model.predict(data)

            max_label_index = None
            max_prediction_value = -1

            print('Prediction')

            Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
            Textbox2 = Textbox2.split(",")
            Textbox2_edited = [x.strip() for x in Textbox2]
            Textbox2_edited = list(Textbox2_edited)
            Textbox2_edited.append(UserInput)
            messages.append({"role": "user", "content": UserInput})

            for i, label in enumerate(labels):
                prediction_value = float(prediction[0][i])
                rounded_value = round(prediction_value, 2)
                print(f'{label}: {rounded_value}')

                if prediction_value > max_prediction_value:
                    max_label_index = i
                    max_prediction_value = prediction_value

            if max_label_index is not None:
                max_label = labels[max_label_index].split(' ', 1)[1]
                max_rounded_prediction = round(max_prediction_value, 2)
                print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')

                if max_rounded_prediction > 0.5:
                    print("\nWays to dispose of this waste: " + max_label)
                    messages.append({"role": "user", "content": content + " " + max_label})

                    headers = {
                        "Content-Type": "application/json",
                        "Authorization": f"Bearer {auth}"
                    }

                    response = requests.post(host, headers=headers, json={
                        "messages": messages,
                        "model": model_llm
                    }).json()

                    reply = response["choices"][0]["message"]["content"]
                    messages.append({"role": "assistant", "content": reply})

                    output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
                elif max_rounded_prediction < 0.5:
                    output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})

            return output

        else:
            output = []

            Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
            Textbox2 = Textbox2.split(",")
            Textbox2_edited = [x.strip() for x in Textbox2]
            Textbox2_edited = list(Textbox2_edited)
            Textbox2_edited.append(UserInput)

            for i in Textbox2_edited:
                messages.append({"role": "user", "content": i})

            print("messages after appending:", messages)

            messages.append({"role": "user", "content": UserInput})

            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {auth}"
            }

            response = requests.post(host, headers=headers, json={
                "messages": messages,
                "model": model_llm
            }).json()

            reply = response["choices"][0]["message"]["content"]
            messages.append({"role": "assistant", "content": reply})

            output.append({"Mode": "Chat", "content": reply})

            return output
    else:
        return "Unauthorized"

user_inputs = [
    gr.Textbox(label="Platform", type="text"),
    gr.Textbox(label="User Input", type="text"),
    gr.Textbox(label="Image", type="text"),
    gr.Textbox(label="Textbox2", type="text"),
    gr.Textbox(label="Textbox3", type="password")
]

iface = gr.Interface(
    fn=classify,
    inputs=user_inputs,
    outputs=gr.outputs.JSON(),
    title="Classifier",
)
iface.launch()