Spaces:
Sleeping
Sleeping
File size: 11,674 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e 274d1f4 f0734be d0463a0 fa97be4 e624859 9a5ce03 fb2aab1 dacc7c0 e3a3d3b 3631cca 334ba26 9a5ce03 494aa89 6858546 334ba26 494aa89 0e313c1 9a5ce03 4e61093 274d1f4 6858546 c69efb6 9a5ce03 9e5813b e3a3d3b fb2aab1 4e61093 d0463a0 95e63ac e624859 95e63ac e624859 d0463a0 95e63ac e624859 d0463a0 95e63ac d0463a0 95e63ac d0463a0 e624859 d0463a0 e624859 d0463a0 e624859 d0463a0 e624859 d0463a0 936af04 4e61093 4184e5e 6858546 936af04 4525308 9a5ce03 4184e5e d9bd34f e624859 4184e5e fb2aab1 e3a3d3b 6858546 936af04 f0734be 274d1f4 6858546 e3a3d3b 274d1f4 a7c229b 90f35d6 e3a3d3b 90f35d6 eba6e2a 274d1f4 864d91e 9a5ce03 658d2e0 95e63ac 37c8a73 902333f 6858546 4e61093 3631cca d0463a0 3631cca f9158d1 a7c229b 3631cca 8af544f 3631cca 3f9d6c3 d0463a0 3631cca d0463a0 a7c229b 3f9d6c3 d0463a0 494ecb7 3f9d6c3 d0463a0 9a5ce03 4c8161e bdb69d5 a919084 d0463a0 a919084 c2adf9a fc18b37 c2adf9a a919084 c2adf9a a919084 c2adf9a a919084 c2adf9a d0463a0 8588a66 27b66bb d0463a0 27b66bb bdb69d5 4c8161e bdb69d5 c2adf9a 95e63ac 3631cca 27b66bb d0463a0 6c32a43 d0463a0 a2919e9 c2adf9a 4c8161e c2adf9a 3f9d6c3 d0463a0 c2adf9a d0463a0 c2adf9a 3631cca d0463a0 6858546 3631cca 27b66bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load intents and chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
# Disease Prediction Code
def load_data():
try:
df = pd.read_csv("Training.csv")
tr = pd.read_csv("Testing.csv")
except FileNotFoundError:
raise RuntimeError("Data files not found. Please ensure `Training.csv` and `Testing.csv` are uploaded correctly.")
disease_dict = {
'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
'Peptic ulcer diseae': 5, 'AIDS': 6, 'Diabetes': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
'Hypertension': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis': 13,
'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18,
'Hepatitis A': 19, 'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23,
'Alcoholic hepatitis': 24, 'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27,
'Heart attack': 28, 'Varicose veins': 29, 'Hypothyroidism': 30, 'Hyperthyroidism': 31,
'Hypoglycemia': 32, 'Osteoarthritis': 33, 'Arthritis': 34
}
df.replace({'prognosis': disease_dict}, inplace=True)
df = df.infer_objects(copy=False)
tr.replace({'prognosis': disease_dict}, inplace=True)
tr = tr.infer_objects(copy=False)
return df, tr, disease_dict
df, tr, disease_dict = load_data()
l1 = list(df.columns[:-1])
X = df[l1]
y = df['prognosis']
X_test = tr[l1]
y_test = tr['prognosis']
def train_models():
models = {
"Decision Tree": DecisionTreeClassifier(),
"Random Forest": RandomForestClassifier(),
"Naive Bayes": GaussianNB()
}
trained_models = {}
for model_name, model_obj in models.items():
model_obj.fit(X, y)
acc = accuracy_score(y_test, model_obj.predict(X_test))
trained_models[model_name] = (model_obj, acc)
return trained_models
trained_models = train_models()
def predict_disease(model, symptoms):
input_test = np.zeros(len(l1))
for symptom in symptoms:
if symptom in l1:
input_test[l1.index(symptom)] = 1
prediction = model.predict([input_test])[0]
confidence = model.predict_proba([input_test])[0][prediction] if hasattr(model, 'predict_proba') else None
return {
"disease": list(disease_dict.keys())[list(disease_dict.values()).index(prediction)],
"confidence": confidence
}
def disease_prediction_interface(symptoms):
symptoms_selected = [s for s in symptoms if s != "None"]
if len(symptoms_selected) < 3:
return ["Please select at least 3 symptoms for accurate prediction."]
results = []
for model_name, (model, acc) in trained_models.items():
prediction_info = predict_disease(model, symptoms_selected)
predicted_disease = prediction_info["disease"]
confidence_score = prediction_info["confidence"]
result = f"{model_name} Prediction: Predicted Disease: **{predicted_disease}**"
if confidence_score is not None:
result += f" (Confidence: {confidence_score:.2f})"
result += f" (Accuracy: {acc * 100:.2f}%)"
results.append(result)
return results
# Helper Functions (for chatbot)
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def generate_chatbot_response(message, history):
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = next((random.choice(intent["responses"]) for intent in intents_data["intents"] if intent["tag"] == tag), "I'm sorry, I didn't understand that. π€")
except Exception as e:
response = f"Error: {e}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return f"Sentiment: {sentiment_map[sentiment_class]}"
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"].lower().strip()
emotion_map = {
"joy": "Joy π",
"anger": "Anger π ",
"sadness": "Sadness π’",
"fear": "Fear π¨",
"surprise": "Surprise π²",
"neutral": "Neutral π",
}
return emotion_map.get(emotion, "Unknown π€"), emotion
def generate_suggestions(emotion):
emotion_key = emotion.lower()
suggestions = {
# Replace with appropriate suggestions for each emotion
}
formatted_suggestions = [
[title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
]
return formatted_suggestions
def get_health_professionals_and_map(location, query):
try:
if not location or not query:
return [], ""
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return [], ""
except Exception as e:
return [], ""
# Main Application Logic
def app_function(user_input, location, query, symptoms, history):
chatbot_history, _ = generate_chatbot_response(user_input, history)
sentiment_result = analyze_sentiment(user_input)
emotion_result, cleaned_emotion = detect_emotion(user_input)
suggestions = generate_suggestions(cleaned_emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
disease_results = disease_prediction_interface(symptoms)
return (
chatbot_history,
sentiment_result,
emotion_result,
suggestions,
professionals,
map_html,
disease_results
)
# CSS Styling
custom_css = """
body {
font-family: 'Roboto', sans-serif;
background-color: #3c6487;
color: white;
}
h1 {
background: #ffffff;
color: #000000;
border-radius: 8px;
padding: 10px;
font-weight: bold;
text-align: center;
font-size: 2.5rem;
}
textarea, input {
background: transparent;
color: black;
border: 2px solid orange;
padding: 8px;
font-size: 1rem;
caret-color: black;
outline: none;
border-radius: 8px;
}
textarea:focus, input:focus {
background: transparent;
color: black;
border: 2px solid orange;
outline: none;
}
.df-container {
background: white;
color: black;
border: 2px solid orange;
border-radius: 10px;
padding: 10px;
font-size: 14px;
max-height: 400px;
height: auto;
overflow-y: auto;
}
#suggestions-title {
text-align: center !important;
font-weight: bold !important;
color: white !important;
font-size: 4.2rem !important;
margin-bottom: 20px !important;
}
.gr-button {
background-color: #ae1c93;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 2px 4px rgba(0, 0, 0, 0.06);
transition: background-color 0.3s ease;
}
.gr-button:hover {
background-color: #8f167b;
}
.gr-button:active {
background-color: #7f156b;
}
"""
# Gradio Application
with gr.Blocks(css=custom_css) as app:
gr.HTML("<h1>π Well-Being Companion</h1>")
with gr.Row():
user_input = gr.Textbox(label="Please Enter Your Message Here")
location = gr.Textbox(label="Your Current Location Here")
query = gr.Textbox(label="Search Health Professionals Nearby")
with gr.Row():
symptom1 = gr.Dropdown(choices=["None"] + l1, label="Symptom 1")
symptom2 = gr.Dropdown(choices=["None"] + l1, label="Symptom 2")
symptom3 = gr.Dropdown(choices=["None"] + l1, label="Symptom 3")
symptom4 = gr.Dropdown(choices=["None"] + l1, label="Symptom 4")
symptom5 = gr.Dropdown(choices=["None"] + l1, label="Symptom 5")
submit = gr.Button(value="Submit", variant="primary")
chatbot = gr.Chatbot(label="Chat History")
sentiment = gr.Textbox(label="Detected Sentiment")
emotion = gr.Textbox(label="Detected Emotion")
gr.Markdown("Suggestions", elem_id="suggestions-title")
suggestions = gr.DataFrame(headers=["Title", "Link"]) # Suggestions DataFrame
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"]) # Professionals DataFrame
map_html = gr.HTML(label="Interactive Map")
disease_predictions = gr.Textbox(label="Disease Predictions") # For Disease Prediction Results
submit.click(
app_function,
inputs=[user_input, location, query, [symptom1, symptom2, symptom3, symptom4, symptom5], chatbot],
outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html, disease_predictions],
)
app.launch() |