Spaces:
Sleeping
Sleeping
File size: 8,468 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e 274d1f4 f0734be fa97be4 9a5ce03 fb2aab1 dacc7c0 e3a3d3b 3631cca 334ba26 9a5ce03 494aa89 6858546 334ba26 494aa89 0e313c1 9a5ce03 4e61093 274d1f4 6858546 c69efb6 9a5ce03 9e5813b e3a3d3b fb2aab1 4e61093 a7c229b 936af04 4e61093 4184e5e 6858546 936af04 4525308 9a5ce03 4184e5e d9bd34f e3a3d3b 6858546 4184e5e fb2aab1 e3a3d3b 6858546 936af04 f0734be 274d1f4 6858546 e3a3d3b 274d1f4 a7c229b 90f35d6 e3a3d3b 90f35d6 eba6e2a 274d1f4 864d91e 9a5ce03 658d2e0 9a5ce03 e3a3d3b a7c229b 658d2e0 9a5ce03 d9bd34f 9a5ce03 d9bd34f 9a5ce03 d9bd34f fb2aab1 a7c229b f9158d1 9a5ce03 37c8a73 9a5ce03 6858546 4e61093 3631cca 9a5ce03 3631cca f9158d1 a7c229b 3631cca e3a3d3b 3631cca a7c229b 9a5ce03 3631cca 9a5ce03 a7c229b 9a5ce03 e3a3d3b eba6e2a 9a5ce03 bdb69d5 a919084 eba6e2a a919084 bdb69d5 a919084 3631cca 9a5ce03 e3a3d3b 9a5ce03 e3a3d3b 9a5ce03 8b34069 9a5ce03 3631cca 9a5ce03 e3a3d3b 6858546 3631cca 658d2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load intents and chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
# Helper Functions
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def generate_chatbot_response(message, history):
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm sorry, I didn't understand that. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {e}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return f"Sentiment: {sentiment_map[sentiment_class]}"
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"].lower().strip()
emotion_map = {
"joy": "Joy π",
"anger": "Anger π ",
"sadness": "Sadness π’",
"fear": "Fear π¨",
"surprise": "Surprise π²",
"neutral": "Neutral π",
}
return emotion_map.get(emotion, "Unknown π€"), emotion
def generate_suggestions(emotion):
emotion_key = emotion.lower()
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation" target="_blank">Visit</a>'],
["Emotional Toolkit", '<a href="https://www.nih.gov" target="_blank">Visit</a>'],
["Stress Management", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
],
"anger": [
["Handle Anger", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
["Stress Tips", '<a href="https://www.helpguide.org/mental-health/anger-management.htm" target="_blank">Visit</a>'],
],
"fear": [
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
["Mindfulness", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>'],
],
"sadness": [
["Overcoming Sadness", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>'],
],
"surprise": [
["Managing Surprises", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
],
"neutral": [
["General Well-Being Tips", '<a href="https://www.psychologytoday.com" target="_blank">Visit</a>'],
],
}
return suggestions.get(emotion_key, [["No specific suggestions available.", ""]])
def get_health_professionals_and_map(location, query):
try:
if not location or not query:
return ["Please provide both location and query."], ""
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', 'No address provided')}")
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found for the given location."], ""
except Exception as e:
return [f"An error occurred: {e}"], ""
# Main Application Logic
def app_function(user_input, location, query, history):
chatbot_history, _ = generate_chatbot_response(user_input, history)
sentiment_result = analyze_sentiment(user_input)
emotion_result, cleaned_emotion = detect_emotion(user_input)
suggestions = generate_suggestions(cleaned_emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html
# Gradio Interface
custom_css = """
body {
font-family: 'Roboto', sans-serif;
background: linear-gradient(135deg,#0d0d0d,#ff5722);
color: white;
}
h1 {
background: #ffffff;
color: #000000;
border-radius: 8px;
padding: 10px;
font-weight: bold;
text-align: center;
font-size: 2.5rem;
}
textarea, input {
background: black;
color: white;
border: 2px solid orange;
font-size: 1rem;
padding: 10px;
border-radius: 8px;
caret-color: white; /* Ensures white cursor when typing */
}
/* Style for focused state to ensure black background and white font */
textarea:focus, input:focus {
background: black; /* Black background when focused or typing */
color: white; /* White text */
border: 2px solid orange; /* Reinforce border for focus */
}
button {
background: linear-gradient(135deg, orange, #ff4500);
color: white;
padding: 10px;
border-radius: 8px;
font-weight: bold;
font-size: 1.2rem;
border: none;
cursor: pointer;
}
button:hover {
box-shadow: 0px 4px 8px rgba(255, 165, 0, 0.5);
}
"""
with gr.Blocks(css=custom_css) as app:
gr.HTML("<h1>π Well-Being Companion</h1>")
with gr.Row():
user_input = gr.Textbox(label="Your Message")
location = gr.Textbox(label="Your Location")
query = gr.Textbox(label="Search Query")
chatbot = gr.Chatbot(label="Chat History")
sentiment = gr.Textbox(label="Detected Sentiment")
emotion = gr.Textbox(label="Detected Emotion")
suggestions = gr.DataFrame(headers=["Title", "Link"])
professionals = gr.Textbox(label="Nearby Professionals", lines=6)
map_html = gr.HTML(label="Interactive Map")
submit = gr.Button("Submit")
submit.click(
app_function,
inputs=[user_input, location, query, chatbot],
outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html]
)
app.launch() |