File size: 25,323 Bytes
7545b49
 
 
 
 
 
fac7ac1
6244ceb
7545b49
 
 
 
 
 
 
 
24a1053
 
7545b49
24a1053
 
7545b49
 
 
fac7ac1
7545b49
fac7ac1
7545b49
2536839
 
a655909
 
 
fac7ac1
 
 
 
 
 
 
 
 
b9e7e41
 
fac7ac1
 
 
 
 
a88c238
 
 
fac7ac1
 
 
 
a88c238
 
 
fac7ac1
 
94f8ddd
 
 
 
 
 
 
 
 
 
 
 
 
f0e935b
 
 
 
 
 
 
4b70cc2
e568f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f8ddd
cb5655c
e568f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b966d2c
6244ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53059ec
e568f6d
 
f35299f
0f5bf62
 
 
 
7545b49
0f5bf62
7545b49
a769f8a
30408c9
4b70cc2
 
46a3d32
 
 
 
4b70cc2
 
 
 
 
 
 
 
 
 
46a3d32
45307d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b70cc2
45307d2
4b70cc2
45307d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b70cc2
45307d2
 
 
 
 
 
 
 
46e893a
 
 
 
 
 
 
 
 
 
a769f8a
7e17f0f
 
e568f6d
 
9e23c76
e568f6d
9e23c76
e568f6d
 
9e23c76
e568f6d
 
 
 
 
 
 
 
 
 
 
 
 
cb5655c
9e23c76
e568f6d
9e23c76
e568f6d
 
9e23c76
e568f6d
 
 
 
 
 
 
 
 
 
 
 
 
7e17f0f
026f31b
9e23c76
e568f6d
11e981b
e568f6d
f29027b
7545b49
a655909
f29027b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
026f31b
6244ceb
 
11e981b
6244ceb
 
11e981b
6244ceb
 
 
e3cbf81
 
 
 
 
6244ceb
 
 
11e981b
6244ceb
 
 
e3cbf81
 
 
 
 
6244ceb
 
11e981b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da2fe63
 
6244ceb
dc7066d
46e893a
11e981b
7e17f0f
dc7066d
 
 
 
 
 
 
 
 
 
 
 
 
 
11e981b
46e893a
6244ceb
dc7066d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
from datetime import datetime, timedelta
from scipy import stats

@st.cache_resource
def init_conn():
        
        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["League_of_Legends_Database"]

        current_date = datetime.now()

        collection = db["gamelogs"] 
        max_date = current_date - timedelta(days=1)
        min_date = current_date - timedelta(days=365)
        team_names = collection.distinct("teamname")
        player_names = collection.distinct("playername")

        return db, team_names, player_names, min_date, max_date
    
db, team_names, player_names, min_date, max_date = init_conn()

display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'}

# Create sidebar container for options
with st.sidebar:
    st.header("Team Analysis Options")

    # Date filtering options
    st.subheader("Date Range")
    date_filter = st.radio(
        "Select Date Range",
        ["Last Year", "Custom Range"]
    )
    
    if date_filter == "Last Year":
        end_date = max_date
        start_date = (end_date - timedelta(days=365))
    else:
        col1, col2 = st.columns(2)
        with col1:
            start_date = st.date_input(
                "Start Date",
                value=max_date.date() - timedelta(days=30),
                min_value=min_date.date(),
                max_value=max_date.date()
            )
        with col2:
            end_date = st.date_input(
                "End Date",
                value=max_date.date(),
                min_value=min_date.date(),
                max_value=max_date.date()
            )

    col1, col2 = st.columns(2)
    with col1:
        selected_team = st.selectbox(
            "Select Team",
            options=team_names,
            index=team_names.index("T1") if "T1" in team_names else 0
        )
    with col2:
        selected_opponent = st.selectbox(
            "Select Opponent",
            options=team_names,
            index=team_names.index("T1") if "T1" in team_names else 0
        )

    st.subheader("Prediction Settings")
    num_games = st.selectbox(
        "Is the match BO1, BO3, or BO5?",
        options=["BO1", "BO3", "BO5"],
        index=0
    )
    
    # Convert BO format to number of games
    game_count = int(num_games[2])
    
    # Create lists to store settings for each game
    win_loss_settings = []
    game_settings_list = []
    kill_predictions = []
    death_predictions = []
    
    # Create a tab for each game
    game_tabs = st.tabs([f"Game {i+1}" for i in range(game_count)])
    
    for game_num, game_tab in enumerate(game_tabs, 1):
        with game_tab:

            win_loss_settings.append(st.selectbox(
                f"Game {game_num} Win/Loss",
                options=["Win", "Loss"],
                index=0,
                key=f"win_loss_{game_num}"
            ))
            game_setting = st.selectbox(
                f"Game {game_num} Prediction Type",
                options=["Average", "Predict"],
                index=0,
                key=f"game_settings_{game_num}"
            )

            if game_setting == "Average":
                kill_predictions.append(0)
                death_predictions.append(0)
            else:
                col1, col2 = st.columns(2)
                with col1:
                    kill_predictions.append(st.number_input(
                        f"Game {game_num} Predicted Team Kills",
                        min_value=1,
                        max_value=100,
                        value=20,
                        key=f"kills_{game_num}"
                    ))
                with col2:
                    death_predictions.append(st.number_input(
                        f"Game {game_num} Predicted Team Deaths",
                        min_value=1,
                        max_value=100,
                        value=5,
                        key=f"deaths_{game_num}"
                    ))

@st.cache_data()
def simulate_stats(row, num_sims=1000):
    """Simulate stats using normal distribution"""
    # Using coefficient of variation of 0.3 to generate reasonable standard deviations
    cv = 0.3
    percentiles = [10, 25, 50, 75, 90]
    
    results = {}
    for stat in ['Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']:
        mean = row[stat]
        std = mean * cv  # Using coefficient of variation to determine std
        sims = stats.norm.rvs(loc=mean, scale=std, size=num_sims)
        # Ensure no negative values
        sims = np.maximum(sims, 0)
        results[stat] = np.percentile(sims, percentiles)
    
    return pd.Series(results)

@st.cache_data(ttl = 60)
def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date):  
        game_count = len(kill_predictions)
        overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj'])
        # Convert date objects to datetime strings in the correct format
        start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
        end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")

        collection = db["gamelogs"] 
        cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
        raw_display = pd.DataFrame(list(cursor))

        cursor = collection.find({"date": {"$gte": start_datetime, "$lte": end_datetime}})
        raw_opponent = pd.DataFrame(list(cursor))

        tables_to_loop = [raw_display, raw_opponent]

        for loop in range(len(tables_to_loop)):
            tables = tables_to_loop[loop]
            calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
            league_pos_win_stats = {}   
            league_pos_loss_stats = {}
            Opponent_pos_win_allowed_stats = {}
            Opponent_pos_loss_allowed_stats = {}
            playername_win_stats = {}
            playername_loss_stats = {}
            teamname_win_stats = {}
            teamname_loss_stats = {}

            if loop == 0:

                for stats in calc_columns:
                    playername_win_stats[stats] = tables[tables['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
                    playername_loss_stats[stats] = tables[tables['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
                    teamname_win_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
                    teamname_loss_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict() 

                for stat in calc_columns:

                    column_name = f'playername_avg_{stat}_win'
                    tables[column_name] = tables.apply(
                        lambda row: playername_win_stats[stat].get(row['playername'], 0), 
                        axis=1
                    )

                    column_name = f'playername_avg_{stat}_loss'
                    tables[column_name] = tables.apply(
                        lambda row: playername_loss_stats[stat].get(row['playername'], 0), 
                        axis=1
                    )

                    column_name = f'teamname_avg_{stat}_win'
                    tables[column_name] = tables.apply(
                        lambda row: teamname_win_stats[stat].get(row['teamname'], 0), 
                        axis=1
                    )

                    column_name = f'teamname_avg_{stat}_loss'
                    tables[column_name] = tables.apply(
                        lambda row: teamname_loss_stats[stat].get(row['teamname'], 0), 
                        axis=1
                    )
            
                tables['playername_avg_kill_share_win'] = tables['playername_avg_kills_win'] / tables['teamname_avg_kills_win']
                tables['playername_avg_death_share_win'] = tables['playername_avg_deaths_win'] / tables['teamname_avg_deaths_win']
                tables['playername_avg_assist_share_win'] = tables['playername_avg_assists_win'] / tables['teamname_avg_kills_win']
                tables['playername_avg_cs_share_win'] = tables['playername_avg_total_cs_win'] / tables['teamname_avg_total_cs_win']
                tables['playername_avg_kill_share_loss'] = tables['playername_avg_kills_loss'] / tables['teamname_avg_kills_loss']
                tables['playername_avg_death_share_loss'] = tables['playername_avg_deaths_loss'] / tables['teamname_avg_deaths_loss']
                tables['playername_avg_assist_share_loss'] = tables['playername_avg_assists_loss'] / tables['teamname_avg_kills_loss']
                tables['playername_avg_cs_share_loss'] = tables['playername_avg_total_cs_loss'] / tables['teamname_avg_total_cs_loss']
                player_tables = tables

            else:

                for stats in calc_columns:
                    league_pos_win_stats[stats] = {
                        league: group.groupby('position')[stats].mean().to_dict()
                        for league, group in tables[tables['result'] == 1].groupby('league')
                    }
                    league_pos_loss_stats[stats] = {
                        league: group.groupby('position')[stats].mean().to_dict()
                        for league, group in tables[tables['result'] == 0].groupby('league')
                    }
                    
                    Opponent_pos_win_allowed_stats[stats] = {
                        opponent: group.groupby('position')[stats].mean().to_dict()
                        for opponent, group in tables[tables['result'] == 1].groupby('Opponent')
                    }
                    Opponent_pos_loss_allowed_stats[stats] = {
                        opponent: group.groupby('position')[stats].mean().to_dict()
                        for opponent, group in tables[tables['result'] == 0].groupby('Opponent')
                    }

                for stat in calc_columns:

                    column_name = f'league_pos_avg_{stat}_win'
                    tables[column_name] = tables.apply(
                        lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0), 
                        axis=1
                    )
                    
                    column_name = f'league_pos_avg_{stat}_loss'
                    tables[column_name] = tables.apply(
                        lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0), 
                        axis=1
                    )

                    column_name = f'Opponent_pos_avg_{stat}_allowed_win'
                    tables[column_name] = tables.apply(
                        lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), 
                        axis=1
                    )

                    column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
                    tables[column_name] = tables.apply(
                        lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), 
                        axis=1
                    )
                
                tables = tables[tables['Opponent'] == opponent]

                tables['overall_win_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_win'] / tables['league_pos_avg_kills_win']
                tables['overall_win_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_win'] / tables['league_pos_avg_deaths_win']
                tables['overall_win_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_win'] / tables['league_pos_avg_assists_win']
                tables['overall_win_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_win'] / tables['league_pos_avg_total_cs_win']
                tables['overall_loss_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_loss'] / tables['league_pos_avg_kills_loss']
                tables['overall_loss_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_loss'] / tables['league_pos_avg_deaths_loss']
                tables['overall_loss_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_loss'] / tables['league_pos_avg_assists_loss']
                tables['overall_loss_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_loss'] / tables['league_pos_avg_total_cs_loss']
                
                opp_tables = tables
                opp_pos_kills_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_kills_boost_pos']))
                opp_pos_deaths_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_deaths_boost_pos']))
                opp_pos_assists_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_assists_boost_pos']))
                opp_pos_cs_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_total_cs_boost_pos']))
                opp_pos_kills_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_kills_boost_pos']))
                opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos']))
                opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos']))
                opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos']))
                opp_boosts = pd.DataFrame({
                    'opp_pos_kills_boost_win': opp_pos_kills_boost_win,
                    'opp_pos_deaths_boost_win': opp_pos_deaths_boost_win,
                    'opp_pos_assists_boost_win': opp_pos_assists_boost_win,
                    'opp_pos_cs_boost_win': opp_pos_cs_boost_win,
                    'opp_pos_kills_boost_loss': opp_pos_kills_boost_loss,
                    'opp_pos_deaths_boost_loss': opp_pos_deaths_boost_loss,
                    'opp_pos_assists_boost_loss': opp_pos_assists_boost_loss,
                    'opp_pos_cs_boost_loss': opp_pos_cs_boost_loss
                }).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position'))

        results_dict = {}

        for game in range(game_count):
            if kill_predictions[game] > 0:
                working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
                                        'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
                working_tables = working_tables.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%',
                                                            'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%',
                                                            'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
                team_data = working_tables.drop_duplicates(subset = ['playername'])

                if win_loss_settings[game] == "Win":
                    team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) * kill_predictions[game]
                    team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1) * death_predictions[game]
                    team_data['Assist_Proj'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) * kill_predictions[game]
                    team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
                    team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
                else:
                    team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) * kill_predictions[game]
                    team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1) * death_predictions[game]
                    team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1) * kill_predictions[game]
                    team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
                    team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
            else:
                working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win',
                                        'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']]
                working_tables = working_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%',
                                                            'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%',
                                                            'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
                team_data = working_tables.drop_duplicates(subset = ['playername'])

                if win_loss_settings[game] == "Win":
                    team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1)
                    team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1)
                    team_data['Assist_Proj'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1)
                    team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
                    team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
                else:
                    team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1)
                    team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1)
                    team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1)
                    team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
                    team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
            
            results_dict[f'game {game + 1}'] = team_data.dropna()
            team_data['playername'] = team_data['playername'] + f' game {game + 1}'

            overall_team_data = pd.concat([overall_team_data, team_data])

        return overall_team_data.dropna().set_index('playername'), opp_boosts, results_dict

if st.button("Run"):
    team_data, opp_boost, results_dict = init_team_data(selected_team, selected_opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date)

    player_summary = pd.DataFrame()
    for game_num, game_df in results_dict.items():
        # Remove 'game X' from playernames if present
        clean_df = game_df.copy()
        clean_df['playername'] = clean_df['playername'].str.split(' game ').str[0]
        
        if player_summary.empty:
            player_summary = clean_df
        else:
            # Add the stats to existing players
            player_summary.update(clean_df)  # Update teamname and position if needed
            for col in ['Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']:
                player_summary[col] += clean_df[col]
    player_summary = player_summary.set_index('playername')

    # Create simulated percentiles
    individual_sim_results = []
    for idx, row in team_data.iterrows():
        percentiles = simulate_stats(row)
        individual_sim_results.append({
            'Player': idx,
            'Position': row['position'],
            'Stat': 'Kills',
            '10%': percentiles['Kill_Proj'][0],
            '25%': percentiles['Kill_Proj'][1],
            '50%': percentiles['Kill_Proj'][2],
            '75%': percentiles['Kill_Proj'][3],
            '90%': percentiles['Kill_Proj'][4]
        })
        # Repeat for other stats
        for stat, name in [('Death_Proj', 'Deaths'), ('Assist_Proj', 'Assists'), ('CS_Proj', 'CS')]:
            individual_sim_results.append({
                'Player': idx,
                'Position': row['position'],
                'Stat': name,
                '10%': percentiles[stat][0],
                '25%': percentiles[stat][1],
                '50%': percentiles[stat][2],
                '75%': percentiles[stat][3],
                '90%': percentiles[stat][4]
            })
    
    sim_df = pd.DataFrame(individual_sim_results)

    # Create simulated percentiles
    overall_sim_results = []
    for idx, row in player_summary.iterrows():
        percentiles = simulate_stats(row)
        overall_sim_results.append({
            'Player': idx,
            'Position': row['position'],
            'Stat': 'Kills',
            '10%': percentiles['Kill_Proj'][0],
            '25%': percentiles['Kill_Proj'][1],
            '50%': percentiles['Kill_Proj'][2],
            '75%': percentiles['Kill_Proj'][3],
            '90%': percentiles['Kill_Proj'][4]
        })
        # Repeat for other stats
        for stat, name in [('Death_Proj', 'Deaths'), ('Assist_Proj', 'Assists'), ('CS_Proj', 'CS')]:
            overall_sim_results.append({
                'Player': idx,
                'Position': row['position'],
                'Stat': name,
                '10%': percentiles[stat][0],
                '25%': percentiles[stat][1],
                '50%': percentiles[stat][2],
                '75%': percentiles[stat][3],
                '90%': percentiles[stat][4]
            })
    
    overall_sim_df = pd.DataFrame(overall_sim_results)
    overall_sim_df = overall_sim_df.drop_duplicates(subset = ['Player', 'Stat'])

    tab1, tab2, tab3 = st.tabs(["Overall Data", "Individual Game Data", "Opponent Data"])
    with tab1:
        st.subheader("Full Match Data")
        st.dataframe(player_summary.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)

        st.subheader("Overall Simulations")
        stat_tabs = st.tabs(["Kills", "Deaths", "Assists", "CS"])
        
        for stat, tab in zip(["Kills", "Deaths", "Assists", "CS"], stat_tabs):
            with tab:
                stat_data = overall_sim_df[overall_sim_df['Stat'] == stat].copy()
                stat_data = stat_data.set_index('Player')[['Position', '10%', '25%', '50%', '75%', '90%']]
                st.dataframe(
                    stat_data.style.format(precision=2).background_gradient(axis=0).background_gradient(cmap='RdYlGn'),
                    use_container_width=True
                )

    with tab2:
        st.subheader("Individual Game Data")
        st.dataframe(team_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)

        st.subheader("Individual Game Simulations")
        unique_players = sim_df['Player'].unique().tolist()
        player_tabs = st.tabs(unique_players)
        
        for player, tab in zip(unique_players, player_tabs):
            with tab:
                player_data = sim_df[sim_df['Player'] == player]
                player_data = player_data.set_index('Stat')
                st.dataframe(
                    player_data[['10%', '25%', '50%', '75%', '90%']]
                    .style.format(precision=2),
                    use_container_width=True
                )
                
    with tab3:
        st.dataframe(opp_boost.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)