Spaces:
Runtime error
Runtime error
File size: 17,483 Bytes
fea4095 90055ac 1a1fb0e c88c76b fea4095 90055ac 6c3a55b 90055ac 6c3a55b 90055ac 6c3a55b 90055ac 1a2e215 6c3a55b 1a2e215 6c3a55b 1a2e215 6c3a55b 1a2e215 6c3a55b 1a2e215 6c3a55b 1a2e215 6c3a55b 1a2e215 6c3a55b 1a2e215 6c3a55b 1a2e215 6c3a55b 1a2e215 6c3a55b 1a2e215 6c3a55b 1a2e215 6c3a55b 1a2e215 90055ac 6c3a55b c88c76b 6c3a55b c88c76b 90055ac 6c3a55b c88c76b 6c3a55b 90055ac c88c76b 6c3a55b c88c76b 90055ac c88c76b 90055ac 6c3a55b 90055ac fea4095 25c11ba 6c3a55b fea4095 6c3a55b 7276d4c fea4095 25c11ba fea4095 bf2292c 90055ac 1a1fb0e 90055ac 6c3a55b 1a1fb0e 25c11ba 1a1fb0e 6c3a55b 25c11ba 6c3a55b 25c11ba 6c3a55b 25c11ba 1a1fb0e 25c11ba c88c76b 1a1fb0e c88c76b 6c3a55b c88c76b 25c11ba 1a1fb0e 25c11ba c88c76b 1a1fb0e 25c11ba 1a1fb0e 25c11ba fea4095 25c11ba fea4095 44302df fea4095 fee88b4 25c11ba 1a1fb0e 25c11ba 6c3a55b fea4095 1a1fb0e 25c11ba 6c3a55b 44302df 25c11ba fea4095 1a1fb0e 25c11ba fee88b4 44302df cddc4c2 25c11ba cddc4c2 25c11ba cddc4c2 25c11ba 44302df cddc4c2 25c11ba cddc4c2 44302df cddc4c2 25c11ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig
from huggingface_hub import hf_hub_download
import json
import torch.nn as nn
import torch.nn.functional as F
import math
# Define the model architecture
class SmolLM2Config(PretrainedConfig):
model_type = "smollm2"
def __init__(
self,
vocab_size=49152,
hidden_size=576,
intermediate_size=1536,
num_hidden_layers=30,
num_attention_heads=9,
num_key_value_heads=3,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.041666666666666664,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=0,
eos_token_id=0,
tie_word_embeddings=True,
rope_theta=10000.0,
**kwargs
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs
)
# Register the model architecture
from transformers import AutoConfig
AutoConfig.register("smollm2", SmolLM2Config)
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, x):
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.eps)
return self.weight * x
def precompute_rope_frequencies(dim: int, max_position_embeddings: int, theta: float = 10000.0):
position = torch.arange(max_position_embeddings).unsqueeze(1) # [seq_len, 1]
div_term = theta ** (torch.arange(0, dim, 2).float() / dim) # [dim/2]
freqs = position / div_term # [seq_len, dim/2]
return freqs
def apply_rotary_embeddings(x: torch.Tensor, freqs: torch.Tensor):
# x shape: [batch, seq_len, heads, head_dim]
# freqs shape: [seq_len, head_dim/2]
x_rot = x.float()
# Reshape freqs to match x's dimensions
freqs = freqs.unsqueeze(0).unsqueeze(2) # [1, seq_len, 1, dim/2]
# Split channels for rotation
x1, x2 = x_rot[..., :x_rot.shape[-1]//2], x_rot[..., x_rot.shape[-1]//2:]
# Apply rotary embeddings
cos = torch.cos(freqs).to(x.device)
sin = torch.sin(freqs).to(x.device)
# Ensure broadcasting dimensions match
cos = cos.expand_as(x1)
sin = sin.expand_as(x1)
# Rotate x1 and x2
x1_rot = x1 * cos - x2 * sin
x2_rot = x2 * cos + x1 * sin
# Concatenate back
return torch.cat([x1_rot, x2_rot], dim=-1).to(x.dtype)
class LlamaAttention(nn.Module):
def __init__(self, config: SmolLM2Config):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.num_kv_heads = config.num_key_value_heads
self.head_dim = config.hidden_size // config.num_attention_heads
# Adjust projections to match head dimensions
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False)
# Initialize rotary embeddings
self.register_buffer(
"rope_freqs",
precompute_rope_frequencies(
self.head_dim, # Use full head_dim for frequencies
config.max_position_embeddings,
config.rope_theta
),
persistent=False
)
def forward(self, hidden_states, attention_mask=None):
batch_size, seq_length, _ = hidden_states.size()
# Project and reshape
q = self.q_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim)
k = self.k_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
v = self.v_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
# Apply rotary embeddings
q = apply_rotary_embeddings(q, self.rope_freqs[:seq_length])
k = apply_rotary_embeddings(k, self.rope_freqs[:seq_length])
# Repeat k/v heads if num_kv_heads < num_heads
if self.num_kv_heads < self.num_heads:
k = k.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
v = v.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
# Scaled dot-product attention
q = q.transpose(1, 2) # (batch, num_heads, seq_len, head_dim)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
attention_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = F.softmax(attention_scores, dim=-1)
context = torch.matmul(attention_probs, v)
context = context.transpose(1, 2).contiguous()
context = context.view(batch_size, seq_length, -1)
return self.o_proj(context)
class LlamaMLP(nn.Module):
def __init__(self, config: SmolLM2Config):
super().__init__()
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
gate = self.act_fn(self.gate_proj(x))
up = self.up_proj(x)
return self.down_proj(gate * up)
class LlamaDecoderLayer(nn.Module):
def __init__(self, config: SmolLM2Config):
super().__init__()
self.self_attn = LlamaAttention(config)
self.mlp = LlamaMLP(config)
self.input_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
def forward(self, hidden_states, attention_mask=None):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(hidden_states, attention_mask)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class SmolLM2ForCausalLM(PreTrainedModel):
config_class = SmolLM2Config
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, config.rms_norm_eps)
# Add lm_head before weight tying
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights
self.apply(self._init_weights)
# Tie weights if configured
if config.tie_word_embeddings:
self.lm_head.weight = self.embed_tokens.weight
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
hidden_states = self.embed_tokens(input_ids)
# Create causal attention mask if none provided
if attention_mask is None:
# Create causal mask
seq_length = input_ids.size(1)
# [batch_size, 1, seq_length, seq_length]
causal_mask = torch.triu(
torch.ones((seq_length, seq_length), dtype=torch.bool, device=input_ids.device),
diagonal=1
).unsqueeze(0).unsqueeze(0)
attention_mask = torch.zeros(
(1, 1, seq_length, seq_length),
dtype=hidden_states.dtype,
device=hidden_states.device
)
attention_mask.masked_fill_(causal_mask, float("-inf"))
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask)
hidden_states = self.norm(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
return logits if loss is None else (loss, logits)
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {
"input_ids": input_ids,
"attention_mask": kwargs.get("attention_mask", None)
}
def generate(
self,
input_ids,
max_length=100,
temperature=0.7,
top_k=50,
do_sample=True,
num_return_sequences=1,
pad_token_id=None,
eos_token_id=None,
**kwargs
):
cur_len = input_ids.shape[1]
batch_size = input_ids.shape[0]
if max_length < cur_len:
max_length = cur_len
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
while cur_len < max_length:
# Prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids)
# Forward pass
with torch.no_grad():
outputs = self(**model_inputs)
next_token_logits = outputs[:, -1, :]
# Temperature scaling
if temperature != 1.0 and temperature > 0:
next_token_logits = next_token_logits / temperature
# Top-k filtering
if top_k > 0:
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
next_token_logits[indices_to_remove] = float('-inf')
# Sample or greedy
if do_sample:
probs = F.softmax(next_token_logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1)
else:
next_tokens = torch.argmax(next_token_logits, dim=-1)
next_tokens = next_tokens.unsqueeze(-1)
# Append next tokens
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
cur_len = input_ids.shape[1]
# Early stopping if all sequences have reached the EOS token
if eos_token_id is not None:
unfinished_sequences = unfinished_sequences.mul(
next_tokens.squeeze(-1).ne(eos_token_id).long()
)
if unfinished_sequences.max() == 0:
break
return input_ids
# Register the model
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)
# Cache for model and tokenizer
MODEL = None
TOKENIZER = None
CONFIG = None
def initialize():
global MODEL, TOKENIZER, CONFIG
if MODEL is None:
print("Loading model and tokenizer...")
model_id = "jatingocodeo/SmolLM2"
try:
# Download and load config
print("Loading config...")
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
with open(config_path, 'r') as f:
config_dict = json.load(f)
CONFIG = SmolLM2Config(**config_dict)
# Load tokenizer
print("Loading tokenizer...")
TOKENIZER = AutoTokenizer.from_pretrained(
model_id,
model_max_length=CONFIG.max_position_embeddings,
padding_side="left",
truncation_side="left",
trust_remote_code=True
)
# Make sure we're using the correct special tokens
special_tokens = {
'bos_token': '<|endoftext|>',
'eos_token': '<|endoftext|>',
'unk_token': '<|endoftext|>',
'pad_token': '<|endoftext|>' # Using endoftext as pad token since it's not specified
}
TOKENIZER.add_special_tokens(special_tokens)
# Load model weights
print("Loading model...")
weights_path = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin")
# Initialize model
MODEL = SmolLM2ForCausalLM(CONFIG)
# Resize token embeddings to match tokenizer
MODEL.resize_token_embeddings(len(TOKENIZER))
# Load state dict
state_dict = torch.load(weights_path, map_location="cpu")
MODEL.load_state_dict(state_dict)
# Move model to device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL = MODEL.to(device)
print(f"Model loaded successfully on {device}")
except Exception as e:
print(f"Error initializing: {str(e)}")
raise
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
# Initialize if not already done
if MODEL is None:
try:
initialize()
except Exception as e:
return f"Failed to initialize model: {str(e)}"
try:
# Process prompt
if not prompt.strip():
return "Please enter a prompt."
# Add BOS token if needed
if not prompt.startswith(TOKENIZER.bos_token):
prompt = TOKENIZER.bos_token + prompt
# Encode prompt
encoded = TOKENIZER.encode_plus(
prompt,
add_special_tokens=True,
return_tensors="pt",
padding=True,
truncation=True,
max_length=CONFIG.max_position_embeddings
)
input_ids = encoded["input_ids"].to(MODEL.device)
attention_mask = encoded["attention_mask"].to(MODEL.device)
# Generate
with torch.no_grad():
outputs = MODEL.generate(
input_ids,
attention_mask=attention_mask,
max_length=min(max_length + len(input_ids[0]), CONFIG.max_position_embeddings),
temperature=max(0.1, min(temperature, 1.0)), # Clamp temperature
top_k=max(1, min(top_k, 100)), # Clamp top_k
do_sample=True if temperature > 0 else False,
num_return_sequences=1,
pad_token_id=TOKENIZER.pad_token_id,
eos_token_id=TOKENIZER.eos_token_id,
)
# Decode and return
generated_text = TOKENIZER.decode(outputs[0], skip_special_tokens=True)
return generated_text.strip()
except Exception as e:
import traceback
traceback.print_exc()
return f"Error during text generation: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
],
outputs=gr.Textbox(label="Generated Text", lines=5),
title="SmolLM2 Text Generator",
description="Generate text using the fine-tuned SmolLM2 model. Adjust parameters to control the generation.",
examples=[
["Once upon a time", 100, 0.7, 50],
["The quick brown fox", 150, 0.8, 40],
],
allow_flagging="never"
)
# Initialize on startup
try:
initialize()
except Exception as e:
print(f"Warning: Model initialization failed: {str(e)}")
print("Model will be initialized on first request")
if __name__ == "__main__":
iface.launch() |