File size: 17,483 Bytes
fea4095
 
90055ac
1a1fb0e
 
c88c76b
 
 
fea4095
90055ac
 
 
 
 
 
 
 
 
 
 
 
 
 
6c3a55b
90055ac
 
 
 
 
 
6c3a55b
90055ac
 
 
 
 
 
 
 
 
 
 
 
 
6c3a55b
90055ac
 
 
 
 
 
 
 
 
 
 
 
1a2e215
 
 
 
 
 
 
 
 
 
 
6c3a55b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a2e215
 
 
6c3a55b
1a2e215
 
6c3a55b
 
 
 
 
1a2e215
6c3a55b
 
 
 
 
 
 
 
 
1a2e215
6c3a55b
 
 
1a2e215
6c3a55b
 
 
 
1a2e215
6c3a55b
 
 
1a2e215
6c3a55b
 
 
 
1a2e215
6c3a55b
 
 
 
 
 
1a2e215
 
6c3a55b
1a2e215
6c3a55b
 
 
 
 
1a2e215
6c3a55b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a2e215
 
 
 
 
 
 
 
 
90055ac
 
 
 
 
 
6c3a55b
c88c76b
 
 
6c3a55b
 
c88c76b
90055ac
6c3a55b
 
 
 
c88c76b
 
 
6c3a55b
 
 
 
 
 
 
 
90055ac
c88c76b
 
6c3a55b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c88c76b
 
 
 
 
 
 
 
 
 
 
90055ac
 
c88c76b
 
 
 
90055ac
6c3a55b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90055ac
 
 
fea4095
 
25c11ba
6c3a55b
fea4095
 
6c3a55b
7276d4c
fea4095
 
25c11ba
fea4095
bf2292c
90055ac
 
1a1fb0e
90055ac
 
6c3a55b
1a1fb0e
25c11ba
1a1fb0e
6c3a55b
 
 
 
 
 
 
25c11ba
6c3a55b
25c11ba
6c3a55b
 
 
 
25c11ba
1a1fb0e
25c11ba
c88c76b
1a1fb0e
c88c76b
 
 
6c3a55b
 
 
 
c88c76b
 
 
 
25c11ba
1a1fb0e
25c11ba
c88c76b
1a1fb0e
 
25c11ba
 
1a1fb0e
25c11ba
fea4095
25c11ba
fea4095
 
44302df
 
 
 
fea4095
fee88b4
25c11ba
 
 
 
1a1fb0e
25c11ba
 
 
 
6c3a55b
 
 
 
 
 
 
 
 
 
fea4095
 
 
1a1fb0e
25c11ba
6c3a55b
 
44302df
 
 
 
25c11ba
 
 
fea4095
 
1a1fb0e
25c11ba
 
fee88b4
44302df
 
 
cddc4c2
 
25c11ba
cddc4c2
 
25c11ba
 
 
 
cddc4c2
25c11ba
 
44302df
cddc4c2
25c11ba
 
 
 
cddc4c2
 
44302df
 
 
 
 
 
 
cddc4c2
25c11ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig
from huggingface_hub import hf_hub_download
import json
import torch.nn as nn
import torch.nn.functional as F
import math

# Define the model architecture
class SmolLM2Config(PretrainedConfig):
    model_type = "smollm2"
    
    def __init__(
        self,
        vocab_size=49152,
        hidden_size=576,
        intermediate_size=1536,
        num_hidden_layers=30,
        num_attention_heads=9,
        num_key_value_heads=3,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.041666666666666664,
        rms_norm_eps=1e-5,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=0,
        eos_token_id=0,
        tie_word_embeddings=True,
        rope_theta=10000.0,
        **kwargs
    ):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs
        )

# Register the model architecture
from transformers import AutoConfig
AutoConfig.register("smollm2", SmolLM2Config)

class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-5):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.eps = eps
        
    def forward(self, x):
        variance = x.pow(2).mean(-1, keepdim=True)
        x = x * torch.rsqrt(variance + self.eps)
        return self.weight * x

def precompute_rope_frequencies(dim: int, max_position_embeddings: int, theta: float = 10000.0):
    position = torch.arange(max_position_embeddings).unsqueeze(1)  # [seq_len, 1]
    div_term = theta ** (torch.arange(0, dim, 2).float() / dim)   # [dim/2]
    freqs = position / div_term  # [seq_len, dim/2]
    return freqs

def apply_rotary_embeddings(x: torch.Tensor, freqs: torch.Tensor):
    # x shape: [batch, seq_len, heads, head_dim]
    # freqs shape: [seq_len, head_dim/2]
    x_rot = x.float()
    
    # Reshape freqs to match x's dimensions
    freqs = freqs.unsqueeze(0).unsqueeze(2)  # [1, seq_len, 1, dim/2]
    
    # Split channels for rotation
    x1, x2 = x_rot[..., :x_rot.shape[-1]//2], x_rot[..., x_rot.shape[-1]//2:]
    
    # Apply rotary embeddings
    cos = torch.cos(freqs).to(x.device)
    sin = torch.sin(freqs).to(x.device)
    
    # Ensure broadcasting dimensions match
    cos = cos.expand_as(x1)
    sin = sin.expand_as(x1)
    
    # Rotate x1 and x2
    x1_rot = x1 * cos - x2 * sin
    x2_rot = x2 * cos + x1 * sin
    
    # Concatenate back
    return torch.cat([x1_rot, x2_rot], dim=-1).to(x.dtype)

class LlamaAttention(nn.Module):
    def __init__(self, config: SmolLM2Config):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.num_kv_heads = config.num_key_value_heads
        self.head_dim = config.hidden_size // config.num_attention_heads
        
        # Adjust projections to match head dimensions
        self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False)
        
        # Initialize rotary embeddings
        self.register_buffer(
            "rope_freqs",
            precompute_rope_frequencies(
                self.head_dim,  # Use full head_dim for frequencies
                config.max_position_embeddings,
                config.rope_theta
            ),
            persistent=False
        )

    def forward(self, hidden_states, attention_mask=None):
        batch_size, seq_length, _ = hidden_states.size()
        
        # Project and reshape
        q = self.q_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim)
        k = self.k_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
        v = self.v_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
        
        # Apply rotary embeddings
        q = apply_rotary_embeddings(q, self.rope_freqs[:seq_length])
        k = apply_rotary_embeddings(k, self.rope_freqs[:seq_length])
        
        # Repeat k/v heads if num_kv_heads < num_heads
        if self.num_kv_heads < self.num_heads:
            k = k.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
            v = v.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
        
        # Scaled dot-product attention
        q = q.transpose(1, 2)  # (batch, num_heads, seq_len, head_dim)
        k = k.transpose(1, 2)
        v = v.transpose(1, 2)
        
        attention_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
        
        if attention_mask is not None:
            attention_scores = attention_scores + attention_mask
            
        attention_probs = F.softmax(attention_scores, dim=-1)
        context = torch.matmul(attention_probs, v)
        
        context = context.transpose(1, 2).contiguous()
        context = context.view(batch_size, seq_length, -1)
        
        return self.o_proj(context)

class LlamaMLP(nn.Module):
    def __init__(self, config: SmolLM2Config):
        super().__init__()
        self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
        self.act_fn = nn.SiLU()

    def forward(self, x):
        gate = self.act_fn(self.gate_proj(x))
        up = self.up_proj(x)
        return self.down_proj(gate * up)

class LlamaDecoderLayer(nn.Module):
    def __init__(self, config: SmolLM2Config):
        super().__init__()
        self.self_attn = LlamaAttention(config)
        self.mlp = LlamaMLP(config)
        self.input_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)

    def forward(self, hidden_states, attention_mask=None):
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states = self.self_attn(hidden_states, attention_mask)
        hidden_states = residual + hidden_states
        
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        
        return hidden_states

class SmolLM2ForCausalLM(PreTrainedModel):
    config_class = SmolLM2Config
    
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.norm = RMSNorm(config.hidden_size, config.rms_norm_eps)
        
        # Add lm_head before weight tying
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        
        # Initialize weights
        self.apply(self._init_weights)
        
        # Tie weights if configured
        if config.tie_word_embeddings:
            self.lm_head.weight = self.embed_tokens.weight
            
    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)

    def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
        hidden_states = self.embed_tokens(input_ids)
        
        # Create causal attention mask if none provided
        if attention_mask is None:
            # Create causal mask
            seq_length = input_ids.size(1)
            # [batch_size, 1, seq_length, seq_length]
            causal_mask = torch.triu(
                torch.ones((seq_length, seq_length), dtype=torch.bool, device=input_ids.device),
                diagonal=1
            ).unsqueeze(0).unsqueeze(0)
            attention_mask = torch.zeros(
                (1, 1, seq_length, seq_length),
                dtype=hidden_states.dtype,
                device=hidden_states.device
            )
            attention_mask.masked_fill_(causal_mask, float("-inf"))
        
        for layer in self.layers:
            hidden_states = layer(hidden_states, attention_mask)
            
        hidden_states = self.norm(hidden_states)
        logits = self.lm_head(hidden_states)
        
        loss = None
        if labels is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
            
        return logits if loss is None else (loss, logits)
    
    def prepare_inputs_for_generation(self, input_ids, **kwargs):
        return {
            "input_ids": input_ids,
            "attention_mask": kwargs.get("attention_mask", None)
        }

    def generate(
        self,
        input_ids,
        max_length=100,
        temperature=0.7,
        top_k=50,
        do_sample=True,
        num_return_sequences=1,
        pad_token_id=None,
        eos_token_id=None,
        **kwargs
    ):
        cur_len = input_ids.shape[1]
        batch_size = input_ids.shape[0]
        
        if max_length < cur_len:
            max_length = cur_len
            
        unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
        
        while cur_len < max_length:
            # Prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids)
            
            # Forward pass
            with torch.no_grad():
                outputs = self(**model_inputs)
                next_token_logits = outputs[:, -1, :]
            
            # Temperature scaling
            if temperature != 1.0 and temperature > 0:
                next_token_logits = next_token_logits / temperature
                
            # Top-k filtering
            if top_k > 0:
                indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
                next_token_logits[indices_to_remove] = float('-inf')
            
            # Sample or greedy
            if do_sample:
                probs = F.softmax(next_token_logits, dim=-1)
                next_tokens = torch.multinomial(probs, num_samples=1)
            else:
                next_tokens = torch.argmax(next_token_logits, dim=-1)
                next_tokens = next_tokens.unsqueeze(-1)
            
            # Append next tokens
            input_ids = torch.cat([input_ids, next_tokens], dim=-1)
            cur_len = input_ids.shape[1]
            
            # Early stopping if all sequences have reached the EOS token
            if eos_token_id is not None:
                unfinished_sequences = unfinished_sequences.mul(
                    next_tokens.squeeze(-1).ne(eos_token_id).long()
                )
                if unfinished_sequences.max() == 0:
                    break
        
        return input_ids

# Register the model
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)

# Cache for model and tokenizer
MODEL = None
TOKENIZER = None
CONFIG = None

def initialize():
    global MODEL, TOKENIZER, CONFIG
    
    if MODEL is None:
        print("Loading model and tokenizer...")
        model_id = "jatingocodeo/SmolLM2"
        
        try:
            # Download and load config
            print("Loading config...")
            config_path = hf_hub_download(repo_id=model_id, filename="config.json")
            with open(config_path, 'r') as f:
                config_dict = json.load(f)
            CONFIG = SmolLM2Config(**config_dict)
            
            # Load tokenizer
            print("Loading tokenizer...")
            TOKENIZER = AutoTokenizer.from_pretrained(
                model_id,
                model_max_length=CONFIG.max_position_embeddings,
                padding_side="left",
                truncation_side="left",
                trust_remote_code=True
            )
            
            # Make sure we're using the correct special tokens
            special_tokens = {
                'bos_token': '<|endoftext|>',
                'eos_token': '<|endoftext|>',
                'unk_token': '<|endoftext|>',
                'pad_token': '<|endoftext|>'  # Using endoftext as pad token since it's not specified
            }
            TOKENIZER.add_special_tokens(special_tokens)
            
            # Load model weights
            print("Loading model...")
            weights_path = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin")
            
            # Initialize model
            MODEL = SmolLM2ForCausalLM(CONFIG)
            
            # Resize token embeddings to match tokenizer
            MODEL.resize_token_embeddings(len(TOKENIZER))
            
            # Load state dict
            state_dict = torch.load(weights_path, map_location="cpu")
            MODEL.load_state_dict(state_dict)
            
            # Move model to device
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            MODEL = MODEL.to(device)
            
            print(f"Model loaded successfully on {device}")
            
        except Exception as e:
            print(f"Error initializing: {str(e)}")
            raise

def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
    # Initialize if not already done
    if MODEL is None:
        try:
            initialize()
        except Exception as e:
            return f"Failed to initialize model: {str(e)}"
    
    try:
        # Process prompt
        if not prompt.strip():
            return "Please enter a prompt."
        
        # Add BOS token if needed
        if not prompt.startswith(TOKENIZER.bos_token):
            prompt = TOKENIZER.bos_token + prompt
        
        # Encode prompt
        encoded = TOKENIZER.encode_plus(
            prompt,
            add_special_tokens=True,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=CONFIG.max_position_embeddings
        )
        input_ids = encoded["input_ids"].to(MODEL.device)
        attention_mask = encoded["attention_mask"].to(MODEL.device)
        
        # Generate
        with torch.no_grad():
            outputs = MODEL.generate(
                input_ids,
                attention_mask=attention_mask,
                max_length=min(max_length + len(input_ids[0]), CONFIG.max_position_embeddings),
                temperature=max(0.1, min(temperature, 1.0)),  # Clamp temperature
                top_k=max(1, min(top_k, 100)),  # Clamp top_k
                do_sample=True if temperature > 0 else False,
                num_return_sequences=1,
                pad_token_id=TOKENIZER.pad_token_id,
                eos_token_id=TOKENIZER.eos_token_id,
            )
        
        # Decode and return
        generated_text = TOKENIZER.decode(outputs[0], skip_special_tokens=True)
        return generated_text.strip()
        
    except Exception as e:
        import traceback
        traceback.print_exc()
        return f"Error during text generation: {str(e)}"

# Create Gradio interface
iface = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
        gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
    ],
    outputs=gr.Textbox(label="Generated Text", lines=5),
    title="SmolLM2 Text Generator",
    description="Generate text using the fine-tuned SmolLM2 model. Adjust parameters to control the generation.",
    examples=[
        ["Once upon a time", 100, 0.7, 50],
        ["The quick brown fox", 150, 0.8, 40],
    ],
    allow_flagging="never"
)

# Initialize on startup
try:
    initialize()
except Exception as e:
    print(f"Warning: Model initialization failed: {str(e)}")
    print("Model will be initialized on first request")

if __name__ == "__main__":
    iface.launch()