File size: 9,868 Bytes
d4557ee
 
 
f4505e9
 
 
1fa6961
f4505e9
 
0c69489
a35ea13
f4505e9
 
0c69489
 
f4505e9
0c69489
 
f4505e9
a35ea13
 
 
0c69489
f4505e9
 
0c69489
f4505e9
 
 
 
0c69489
f4505e9
1fa6961
f4505e9
 
0c69489
f4505e9
cc467c2
f4505e9
 
0c69489
f4505e9
 
 
 
 
 
0c69489
f4505e9
a55679f
f4505e9
 
0c69489
25c1140
d4557ee
a35ea13
 
a55679f
 
 
 
25c1140
d4557ee
0f81d99
f4505e9
9a3d597
0c69489
25c1140
a55679f
d4557ee
a55679f
a35ea13
a55679f
 
25c1140
d4557ee
b1b6e20
a35ea13
 
 
 
 
 
0c69489
 
 
 
8a0eb29
a35ea13
 
 
0c69489
a35ea13
 
 
 
 
 
 
 
 
0c69489
 
a35ea13
 
 
 
 
f4505e9
0c69489
 
a35ea13
8a0eb29
a35ea13
 
 
8a0eb29
 
 
 
 
 
 
 
 
 
 
a35ea13
8a0eb29
 
 
 
a35ea13
8a0eb29
f4505e9
a35ea13
a55679f
d4557ee
f4505e9
 
 
d4557ee
 
f4505e9
0c69489
a35ea13
 
a55679f
 
 
 
d4557ee
a55679f
d4557ee
8a0eb29
a35ea13
 
 
 
8a0eb29
a35ea13
8a0eb29
a35ea13
 
 
 
 
a55679f
 
 
a35ea13
 
 
 
 
 
 
 
 
 
8a0eb29
a35ea13
8a0eb29
 
a55679f
 
0c69489
a35ea13
 
 
0c69489
a35ea13
8a0eb29
a35ea13
 
 
 
0c69489
 
 
a35ea13
8a0eb29
 
a35ea13
 
 
0c69489
 
 
a35ea13
8a0eb29
 
 
a35ea13
8a0eb29
a55679f
 
 
 
0c69489
 
 
 
 
0ab2059
0c69489
 
8a0eb29
0c69489
0ab2059
8a0eb29
0c69489
d4557ee
0f81d99
0c69489
 
 
 
 
 
 
 
72c7dbb
0c69489
a35ea13
 
 
 
 
 
8a0eb29
a35ea13
 
 
 
 
 
 
 
 
0c69489
 
8a0eb29
a35ea13
 
8a0eb29
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import time
import random
from dotenv import load_dotenv
from typing import List, Dict, Any, TypedDict, Annotated
import operator

from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.vectorstores import FAISS
from langchain.tools.retriever import create_retriever_tool
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_community.embeddings import SentenceTransformerEmbeddings

from langgraph.graph import StateGraph, START, END
from langgraph.checkpoint.memory import MemorySaver

# Load environment variables
load_dotenv()

# ---- Tool Definitions ----
@tool
def multiply(a: int, b: int) -> int:
    """Multiply two integers and return the product."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two integers and return the sum."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract the second integer from the first and return the difference."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide the first integer by the second and return the quotient."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Return the remainder of the division of the first integer by the second."""
    return a % b

@tool
def optimized_web_search(query: str) -> str:
    """Perform an optimized web search using TavilySearchResults and return concatenated document snippets."""
    try:
        time.sleep(random.uniform(1, 2))
        search_tool = TavilySearchResults(max_results=2)
        docs = search_tool.invoke({"query": query})
        return "\n\n---\n\n".join(
            f"<Doc url='{d.get('url','')}'>{d.get('content','')[:500]}</Doc>"
            for d in docs
        )
    except Exception as e:
        return f"Web search failed: {e}"

@tool
def optimized_wiki_search(query: str) -> str:
    """Perform an optimized Wikipedia search and return concatenated document snippets."""
    try:
        time.sleep(random.uniform(0.5, 1))
        docs = WikipediaLoader(query=query, load_max_docs=1).load()
        return "\n\n---\n\n".join(
            f"<Doc src='{d.metadata.get('source', 'Wikipedia')}'>{d.page_content[:800]}</Doc>"
            for d in docs
        )
    except Exception as e:
        return f"Wikipedia search failed: {e}"

# ---- LLM Integrations with Error Handling ----
try:
    from langchain_groq import ChatGroq
    GROQ_AVAILABLE = True
except ImportError:
    GROQ_AVAILABLE = False

import requests

def deepseek_generate(prompt, api_key=None):
    """Call DeepSeek API directly."""
    if not api_key:
        return "DeepSeek API key not provided"
    
    url = "https://api.deepseek.com/v1/chat/completions"
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json"
    }
    data = {
        "model": "deepseek-chat",
        "messages": [{"role": "user", "content": prompt}],
        "stream": False
    }
    try:
        resp = requests.post(url, headers=headers, json=data, timeout=30)
        resp.raise_for_status()
        choices = resp.json().get("choices", [])
        if choices and "message" in choices[0]:
            return choices[0]["message"].get("content", "")
        return "No response from DeepSeek"
    except Exception as e:
        return f"DeepSeek API error: {e}"

def baidu_ernie_generate(prompt, api_key=None):
    """Call Baidu ERNIE API."""
    if not api_key:
        return "Baidu ERNIE API key not provided"
    
    # Baidu ERNIE API endpoint (replace with actual endpoint)
    url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {api_key}"
    }
    data = {
        "messages": [{"role": "user", "content": prompt}],
        "temperature": 0.1,
        "top_p": 0.8
    }
    try:
        resp = requests.post(url, headers=headers, json=data, timeout=30)
        resp.raise_for_status()
        result = resp.json().get("result", "")
        return result if result else "No response from Baidu ERNIE"
    except Exception as e:
        return f"Baidu ERNIE API error: {e}"

# ---- Graph State ----
class EnhancedAgentState(TypedDict):
    messages: Annotated[List[HumanMessage|AIMessage], operator.add]
    query: str
    agent_type: str
    final_answer: str
    perf: Dict[str,Any]
    agno_resp: str

class HybridLangGraphMultiLLMSystem:
    def __init__(self, provider="groq"):
        self.provider = provider
        self.tools = [
            multiply, add, subtract, divide, modulus,
            optimized_web_search, optimized_wiki_search
        ]
        self.graph = self._build_graph()

    def _build_graph(self):
        # Initialize Groq LLM with error handling
        groq_llm = None
        
        if GROQ_AVAILABLE and os.getenv("GROQ_API_KEY"):
            try:
                # Use Groq for multiple model access
                groq_llm = ChatGroq(
                    model="llama-3.1-70b-versatile",  # Updated to a current model
                    temperature=0, 
                    api_key=os.getenv("GROQ_API_KEY")
                )
            except Exception as e:
                print(f"Failed to initialize Groq: {e}")

        def router(st: EnhancedAgentState) -> EnhancedAgentState:
            q = st["query"].lower()
            if "groq" in q and groq_llm:      
                t = "groq"
            elif "deepseek" in q: 
                t = "deepseek"
            elif "ernie" in q or "baidu" in q: 
                t = "baidu"
            else: 
                # Default to first available provider
                if groq_llm:
                    t = "groq"
                elif os.getenv("DEEPSEEK_API_KEY"):
                    t = "deepseek"
                else:
                    t = "baidu"
            return {**st, "agent_type": t}

        def groq_node(st: EnhancedAgentState) -> EnhancedAgentState:
            if not groq_llm:
                return {**st, "final_answer": "Groq not available", "perf": {"error": "No Groq LLM"}}
            
            t0 = time.time()
            try:
                sys = SystemMessage(content="You are a helpful AI assistant. Provide accurate and detailed answers. Be concise but thorough.")
                res = groq_llm.invoke([sys, HumanMessage(content=st["query"])])
                return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "Groq"}}
            except Exception as e:
                return {**st, "final_answer": f"Groq error: {e}", "perf": {"error": str(e)}}

        def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
            t0 = time.time()
            try:
                prompt = f"You are a helpful AI assistant. Provide accurate and detailed answers. Be concise but thorough.\n\nUser question: {st['query']}"
                resp = deepseek_generate(prompt, api_key=os.getenv("DEEPSEEK_API_KEY"))
                return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "DeepSeek"}}
            except Exception as e:
                return {**st, "final_answer": f"DeepSeek error: {e}", "perf": {"error": str(e)}}

        def baidu_node(st: EnhancedAgentState) -> EnhancedAgentState:
            t0 = time.time()
            try:
                prompt = f"You are a helpful AI assistant. Provide accurate and detailed answers. Be concise but thorough.\n\nUser question: {st['query']}"
                resp = baidu_ernie_generate(prompt, api_key=os.getenv("BAIDU_API_KEY"))
                return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "Baidu ERNIE"}}
            except Exception as e:
                return {**st, "final_answer": f"Baidu ERNIE error: {e}", "perf": {"error": str(e)}}

        def pick(st: EnhancedAgentState) -> str:
            return st["agent_type"]

        g = StateGraph(EnhancedAgentState)
        g.add_node("router", router)
        g.add_node("groq", groq_node)
        g.add_node("deepseek", deepseek_node)
        g.add_node("baidu", baidu_node)
        g.set_entry_point("router")
        g.add_conditional_edges("router", pick, {
            "groq": "groq",
            "deepseek": "deepseek", 
            "baidu": "baidu"
        })
        for n in ["groq", "deepseek", "baidu"]:
            g.add_edge(n, END)
        return g.compile(checkpointer=MemorySaver())

    def process_query(self, q: str) -> str:
        state = {
            "messages": [HumanMessage(content=q)],
            "query": q,
            "agent_type": "",
            "final_answer": "",
            "perf": {},
            "agno_resp": ""
        }
        cfg = {"configurable": {"thread_id": f"hyb_{hash(q)}"}}
        try:
            out = self.graph.invoke(state, cfg)
            raw_answer = out.get("final_answer", "No answer generated")
            
            # Clean up the answer
            if isinstance(raw_answer, str):
                return raw_answer.strip()
            return str(raw_answer)
        except Exception as e:
            return f"Error processing query: {e}"

# Function expected by app.py
def build_graph(provider="groq"):
    """Build and return the graph for the agent system."""
    system = HybridLangGraphMultiLLMSystem(provider=provider)
    return system.graph

if __name__ == "__main__":
    query = "What are the main benefits of using multiple LLM providers?"
    system = HybridLangGraphMultiLLMSystem()
    result = system.process_query(query)
    print("LangGraph Multi-LLM Result:", result)