File size: 9,868 Bytes
d4557ee f4505e9 1fa6961 f4505e9 0c69489 a35ea13 f4505e9 0c69489 f4505e9 0c69489 f4505e9 a35ea13 0c69489 f4505e9 0c69489 f4505e9 0c69489 f4505e9 1fa6961 f4505e9 0c69489 f4505e9 cc467c2 f4505e9 0c69489 f4505e9 0c69489 f4505e9 a55679f f4505e9 0c69489 25c1140 d4557ee a35ea13 a55679f 25c1140 d4557ee 0f81d99 f4505e9 9a3d597 0c69489 25c1140 a55679f d4557ee a55679f a35ea13 a55679f 25c1140 d4557ee b1b6e20 a35ea13 0c69489 8a0eb29 a35ea13 0c69489 a35ea13 0c69489 a35ea13 f4505e9 0c69489 a35ea13 8a0eb29 a35ea13 8a0eb29 a35ea13 8a0eb29 a35ea13 8a0eb29 f4505e9 a35ea13 a55679f d4557ee f4505e9 d4557ee f4505e9 0c69489 a35ea13 a55679f d4557ee a55679f d4557ee 8a0eb29 a35ea13 8a0eb29 a35ea13 8a0eb29 a35ea13 a55679f a35ea13 8a0eb29 a35ea13 8a0eb29 a55679f 0c69489 a35ea13 0c69489 a35ea13 8a0eb29 a35ea13 0c69489 a35ea13 8a0eb29 a35ea13 0c69489 a35ea13 8a0eb29 a35ea13 8a0eb29 a55679f 0c69489 0ab2059 0c69489 8a0eb29 0c69489 0ab2059 8a0eb29 0c69489 d4557ee 0f81d99 0c69489 72c7dbb 0c69489 a35ea13 8a0eb29 a35ea13 0c69489 8a0eb29 a35ea13 8a0eb29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
import time
import random
from dotenv import load_dotenv
from typing import List, Dict, Any, TypedDict, Annotated
import operator
from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.vectorstores import FAISS
from langchain.tools.retriever import create_retriever_tool
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langgraph.graph import StateGraph, START, END
from langgraph.checkpoint.memory import MemorySaver
# Load environment variables
load_dotenv()
# ---- Tool Definitions ----
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers and return the product."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers and return the sum."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract the second integer from the first and return the difference."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide the first integer by the second and return the quotient."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder of the division of the first integer by the second."""
return a % b
@tool
def optimized_web_search(query: str) -> str:
"""Perform an optimized web search using TavilySearchResults and return concatenated document snippets."""
try:
time.sleep(random.uniform(1, 2))
search_tool = TavilySearchResults(max_results=2)
docs = search_tool.invoke({"query": query})
return "\n\n---\n\n".join(
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:500]}</Doc>"
for d in docs
)
except Exception as e:
return f"Web search failed: {e}"
@tool
def optimized_wiki_search(query: str) -> str:
"""Perform an optimized Wikipedia search and return concatenated document snippets."""
try:
time.sleep(random.uniform(0.5, 1))
docs = WikipediaLoader(query=query, load_max_docs=1).load()
return "\n\n---\n\n".join(
f"<Doc src='{d.metadata.get('source', 'Wikipedia')}'>{d.page_content[:800]}</Doc>"
for d in docs
)
except Exception as e:
return f"Wikipedia search failed: {e}"
# ---- LLM Integrations with Error Handling ----
try:
from langchain_groq import ChatGroq
GROQ_AVAILABLE = True
except ImportError:
GROQ_AVAILABLE = False
import requests
def deepseek_generate(prompt, api_key=None):
"""Call DeepSeek API directly."""
if not api_key:
return "DeepSeek API key not provided"
url = "https://api.deepseek.com/v1/chat/completions"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": prompt}],
"stream": False
}
try:
resp = requests.post(url, headers=headers, json=data, timeout=30)
resp.raise_for_status()
choices = resp.json().get("choices", [])
if choices and "message" in choices[0]:
return choices[0]["message"].get("content", "")
return "No response from DeepSeek"
except Exception as e:
return f"DeepSeek API error: {e}"
def baidu_ernie_generate(prompt, api_key=None):
"""Call Baidu ERNIE API."""
if not api_key:
return "Baidu ERNIE API key not provided"
# Baidu ERNIE API endpoint (replace with actual endpoint)
url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
data = {
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.1,
"top_p": 0.8
}
try:
resp = requests.post(url, headers=headers, json=data, timeout=30)
resp.raise_for_status()
result = resp.json().get("result", "")
return result if result else "No response from Baidu ERNIE"
except Exception as e:
return f"Baidu ERNIE API error: {e}"
# ---- Graph State ----
class EnhancedAgentState(TypedDict):
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
query: str
agent_type: str
final_answer: str
perf: Dict[str,Any]
agno_resp: str
class HybridLangGraphMultiLLMSystem:
def __init__(self, provider="groq"):
self.provider = provider
self.tools = [
multiply, add, subtract, divide, modulus,
optimized_web_search, optimized_wiki_search
]
self.graph = self._build_graph()
def _build_graph(self):
# Initialize Groq LLM with error handling
groq_llm = None
if GROQ_AVAILABLE and os.getenv("GROQ_API_KEY"):
try:
# Use Groq for multiple model access
groq_llm = ChatGroq(
model="llama-3.1-70b-versatile", # Updated to a current model
temperature=0,
api_key=os.getenv("GROQ_API_KEY")
)
except Exception as e:
print(f"Failed to initialize Groq: {e}")
def router(st: EnhancedAgentState) -> EnhancedAgentState:
q = st["query"].lower()
if "groq" in q and groq_llm:
t = "groq"
elif "deepseek" in q:
t = "deepseek"
elif "ernie" in q or "baidu" in q:
t = "baidu"
else:
# Default to first available provider
if groq_llm:
t = "groq"
elif os.getenv("DEEPSEEK_API_KEY"):
t = "deepseek"
else:
t = "baidu"
return {**st, "agent_type": t}
def groq_node(st: EnhancedAgentState) -> EnhancedAgentState:
if not groq_llm:
return {**st, "final_answer": "Groq not available", "perf": {"error": "No Groq LLM"}}
t0 = time.time()
try:
sys = SystemMessage(content="You are a helpful AI assistant. Provide accurate and detailed answers. Be concise but thorough.")
res = groq_llm.invoke([sys, HumanMessage(content=st["query"])])
return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "Groq"}}
except Exception as e:
return {**st, "final_answer": f"Groq error: {e}", "perf": {"error": str(e)}}
def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
t0 = time.time()
try:
prompt = f"You are a helpful AI assistant. Provide accurate and detailed answers. Be concise but thorough.\n\nUser question: {st['query']}"
resp = deepseek_generate(prompt, api_key=os.getenv("DEEPSEEK_API_KEY"))
return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "DeepSeek"}}
except Exception as e:
return {**st, "final_answer": f"DeepSeek error: {e}", "perf": {"error": str(e)}}
def baidu_node(st: EnhancedAgentState) -> EnhancedAgentState:
t0 = time.time()
try:
prompt = f"You are a helpful AI assistant. Provide accurate and detailed answers. Be concise but thorough.\n\nUser question: {st['query']}"
resp = baidu_ernie_generate(prompt, api_key=os.getenv("BAIDU_API_KEY"))
return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "Baidu ERNIE"}}
except Exception as e:
return {**st, "final_answer": f"Baidu ERNIE error: {e}", "perf": {"error": str(e)}}
def pick(st: EnhancedAgentState) -> str:
return st["agent_type"]
g = StateGraph(EnhancedAgentState)
g.add_node("router", router)
g.add_node("groq", groq_node)
g.add_node("deepseek", deepseek_node)
g.add_node("baidu", baidu_node)
g.set_entry_point("router")
g.add_conditional_edges("router", pick, {
"groq": "groq",
"deepseek": "deepseek",
"baidu": "baidu"
})
for n in ["groq", "deepseek", "baidu"]:
g.add_edge(n, END)
return g.compile(checkpointer=MemorySaver())
def process_query(self, q: str) -> str:
state = {
"messages": [HumanMessage(content=q)],
"query": q,
"agent_type": "",
"final_answer": "",
"perf": {},
"agno_resp": ""
}
cfg = {"configurable": {"thread_id": f"hyb_{hash(q)}"}}
try:
out = self.graph.invoke(state, cfg)
raw_answer = out.get("final_answer", "No answer generated")
# Clean up the answer
if isinstance(raw_answer, str):
return raw_answer.strip()
return str(raw_answer)
except Exception as e:
return f"Error processing query: {e}"
# Function expected by app.py
def build_graph(provider="groq"):
"""Build and return the graph for the agent system."""
system = HybridLangGraphMultiLLMSystem(provider=provider)
return system.graph
if __name__ == "__main__":
query = "What are the main benefits of using multiple LLM providers?"
system = HybridLangGraphMultiLLMSystem()
result = system.process_query(query)
print("LangGraph Multi-LLM Result:", result)
|