File size: 15,877 Bytes
09a0b53
9370b00
09a0b53
dd92890
0f83924
9370b00
dfecac2
9370b00
8588a31
dfecac2
 
bfe5a86
9370b00
dd92890
 
09a0b53
dd92890
3cf95b0
dfecac2
3cf95b0
 
 
9370b00
 
 
 
3cf95b0
 
9370b00
3cf95b0
9370b00
3cf95b0
9370b00
3cf95b0
 
9370b00
 
 
 
 
 
 
 
9c89976
9370b00
bfe5a86
9370b00
 
 
 
 
 
 
 
9c89976
bfe5a86
9370b00
bfe5a86
9370b00
3cf95b0
9370b00
3cf95b0
 
9370b00
3cf95b0
9370b00
dfecac2
9370b00
 
 
 
 
3cf95b0
9370b00
dfecac2
3cf95b0
 
 
fc628b4
9370b00
 
3cf95b0
 
9370b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cf95b0
9370b00
 
dfecac2
bfe5a86
9370b00
bfe5a86
9370b00
3cf95b0
9370b00
 
 
 
 
 
 
 
 
dfecac2
9370b00
dfecac2
9370b00
 
 
 
dfecac2
 
9370b00
 
dfecac2
9370b00
 
 
 
 
 
dfecac2
9370b00
3cf95b0
9370b00
dfecac2
9370b00
3cf95b0
bfe5a86
3cf95b0
 
 
 
 
9370b00
3cf95b0
9370b00
 
 
 
3cf95b0
9370b00
3cf95b0
9370b00
 
 
 
 
3cf95b0
9370b00
3cf95b0
9370b00
3cf95b0
9370b00
 
 
 
 
 
 
bfe5a86
9370b00
 
 
 
 
 
d94f105
09a0b53
9370b00
09a0b53
9370b00
3cf95b0
9370b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cf95b0
9370b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfecac2
3cf95b0
9370b00
 
 
 
 
 
 
 
 
9c89976
3cf95b0
9370b00
 
 
3cf95b0
9370b00
 
 
 
 
 
 
dfecac2
9370b00
 
 
 
3cf95b0
dfecac2
9370b00
 
 
 
 
dfecac2
9370b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cf95b0
9370b00
 
 
 
 
3cf95b0
ddd0e04
09a0b53
9370b00
09a0b53
9370b00
3cf95b0
9370b00
 
 
 
3cf95b0
9370b00
3cf95b0
 
 
9370b00
 
 
 
 
3cf95b0
 
 
9370b00
 
 
 
3cf95b0
dfecac2
3cf95b0
9370b00
 
 
3cf95b0
dfecac2
3cf95b0
9370b00
 
 
 
 
 
3cf95b0
dfecac2
 
9370b00
dfecac2
9370b00
 
 
 
dfecac2
 
 
 
9370b00
dfecac2
 
9370b00
 
 
 
 
 
b31058d
3cf95b0
 
9370b00
 
3cf95b0
9370b00
 
 
 
 
 
 
dfecac2
9370b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cf95b0
9370b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddd0e04
 
9370b00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# ------------------------------
# NeuroResearch 2.0: Advanced Research Cognition System
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.retrievers import BM25Retriever
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import SemanticChunker
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence, Dict, List, Optional, Any, Tuple
import chromadb
import os
import streamlit as st
import requests
import hashlib
import json
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
import plotly.express as px
import pandas as pd
from rank_bm25 import BM25Okapi
from sentence_transformers import CrossEncoder

# ------------------------------
# Quantum Cognition Configuration
# ------------------------------
class NeuroConfig:
    DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
    CHROMA_PATH = "neuro_db"
    CHUNK_SIZE = 512
    CHUNK_OVERLAP = 64
    MAX_CONCURRENT_REQUESTS = 7
    EMBEDDING_DIMENSIONS = 3072
    HYBRID_RERANK_TOP_K = 15
    ANALYSIS_MODES = {
        "technical": "Deep Technical Analysis",
        "comparative": "Cross-Paper Comparison",
        "temporal": "Temporal Trend Analysis",
        "critical": "Critical Literature Review"
    }
    CACHE_TTL = 3600  # 1 hour

# ------------------------------
# Quantum State Schema
# ------------------------------
class ResearchState(TypedDict):
    messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
    context: Dict[str, Any]
    metadata: Dict[str, Any]
    cognitive_artifacts: Dict[str, Any]

# ------------------------------
# Neural Document Processor
# ------------------------------
class NeuralDocumentProcessor:
    def __init__(self):
        self.client = chromadb.PersistentClient(path=NeuroConfig.CHROMA_PATH)
        self.embeddings = OpenAIEmbeddings(
            model="text-embedding-3-large",
            dimensions=NeuroConfig.EMBEDDING_DIMENSIONS
        )
        self.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
        
    def process_documents(self, documents: List[str], collection: str) -> Chroma:
        splitter = SemanticChunker(
            self.embeddings,
            breakpoint_threshold_type="percentile",
            breakpoint_threshold_amount=0.8
        )
        
        docs = splitter.create_documents(documents)
        return Chroma.from_documents(
            documents=docs,
            embedding=self.embeddings,
            client=self.client,
            collection_name=collection,
            ids=[self._quantum_id(doc.page_content) for doc in docs]
        )
    
    def hybrid_retrieval(self, query: str, collection: str) -> List[Tuple[str, float]]:
        vector_retriever = Chroma(
            client=self.client,
            collection_name=collection,
            embedding_function=self.embeddings
        ).as_retriever(search_kwargs={"k": NeuroConfig.HYBRID_RERANK_TOP_K})
        
        bm25_retriever = BM25Retriever.from_documents(
            vector_retriever.get()["documents"],
            preprocess_func=lambda x: x.split()
        )
        
        vector_results = vector_retriever.invoke(query)
        bm25_results = bm25_retriever.invoke(query)
        
        combined = list({doc.page_content: doc for doc in vector_results + bm25_results}.values())
        scores = self.cross_encoder.predict([(query, doc.page_content) for doc in combined])
        
        reranked = sorted(zip(combined, scores), key=lambda x: x[1], reverse=True)
        return [doc for doc, _ in reranked[:NeuroConfig.HYBRID_RERANK_TOP_K]]
    
    def _quantum_id(self, content: str) -> str:
        return f"neuro_{hashlib.sha3_256(content.encode()).hexdigest()[:24]}"

# ------------------------------
# Cognitive Processing Units
# ------------------------------
class NeuroAnalyticalEngine:
    def __init__(self):
        self.executor = ThreadPoolExecutor(max_workers=NeuroConfig.MAX_CONCURRENT_REQUESTS)
        self.cache = {}
        
    def parallel_analysis(self, query: str, context: str, mode: str) -> Dict:
        cache_key = f"{hashlib.sha256(query.encode()).hexdigest()[:16]}_{mode}"
        if cached := self.cache.get(cache_key):
            if time.time() - cached["timestamp"] < NeuroConfig.CACHE_TTL:
                return cached["response"]
        
        futures = []
        for _ in range(3):
            futures.append(self.executor.submit(
                self._cognitive_process,
                query,
                context,
                mode
            ))
        
        results = [f.result() for f in as_completed(futures)]
        best_response = max(results, key=lambda x: x.get('quality_score', 0))
        
        self.cache[cache_key] = {
            "response": best_response,
            "timestamp": time.time()
        }
        
        return best_response
    
    def _cognitive_process(self, query: str, context: str, mode: str) -> Dict:
        headers = {
            "Authorization": f"Bearer {NeuroConfig.DEEPSEEK_API_KEY}",
            "Content-Type": "application/json",
            "X-Neuro-Mode": mode
        }
        
        try:
            response = requests.post(
                "https://api.deepseek.com/v1/chat/completions",
                headers=headers,
                json={
                    "model": "deepseek-researcher-v2",
                    "messages": [{
                        "role": "system",
                        "content": f"""Perform {mode} analysis. Context:
                        {context}"""
                    }, {
                        "role": "user",
                        "content": query
                    }],
                    "temperature": 0.3 if mode == "technical" else 0.7,
                    "max_tokens": 2048,
                    "top_p": 0.95,
                    "response_format": {"type": "json_object"},
                    "seed": 42
                },
                timeout=60
            )
            
            response.raise_for_status()
            analysis = json.loads(response.json()["choices"][0]["message"]["content"])
            return {
                **analysis,
                "quality_score": self._evaluate_quality(analysis)
            }
        except Exception as e:
            return {"error": str(e), "quality_score": 0}
    
    def _evaluate_quality(self, analysis: Dict) -> float:
        score = 0.0
        score += len(analysis.get("key_points", [])) * 0.2
        score += len(analysis.get("comparisons", [])) * 0.3
        score += len(analysis.get("citations", [])) * 0.5
        return min(score, 1.0)

# ------------------------------
# Advanced Research Workflow
# ------------------------------
class NeuroResearchWorkflow:
    def __init__(self):
        self.processor = NeuralDocumentProcessor()
        self.engine = NeuroAnalyticalEngine()
        self._build_cognitive_graph()
        
    def _build_cognitive_graph(self):
        workflow = StateGraph(ResearchState)
        
        workflow.add_node("ingest", self.ingest_query)
        workflow.add_node("retrieve", self.retrieve_documents)
        workflow.add_node("analyze", self.analyze_content)
        workflow.add_node("visualize", self.generate_insights)
        workflow.add_node("validate", self.validate_knowledge)
        
        workflow.set_entry_point("ingest")
        workflow.add_edge("ingest", "retrieve")
        workflow.add_edge("retrieve", "analyze")
        workflow.add_edge("analyze", "visualize")
        workflow.add_edge("visualize", "validate")
        workflow.add_edge("validate", END)
        
        self.app = workflow.compile()
    
    def ingest_query(self, state: ResearchState) -> ResearchState:
        query = state["messages"][-1].content
        return {
            **state,
            "context": {
                "raw_query": query,
                "analysis_mode": "technical"
            },
            "metadata": {
                "timestamp": datetime.now().isoformat(),
                "session_id": hashlib.sha256(query.encode()).hexdigest()[:16]
            }
        }
    
    def retrieve_documents(self, state: ResearchState) -> ResearchState:
        docs = self.processor.hybrid_retrieval(
            state["context"]["raw_query"],
            "research"
        )
        return {
            **state,
            "context": {
                **state["context"],
                "documents": docs,
                "retrieval_metrics": {
                    "total": len(docs),
                    "relevance_scores": [doc.metadata.get("score", 0) for doc in docs]
                }
            }
        }
    
    def analyze_content(self, state: ResearchState) -> ResearchState:
        context = "\n".join([doc.page_content for doc in state["context"]["documents"]])
        analysis = self.engine.parallel_analysis(
            query=state["context"]["raw_query"],
            context=context,
            mode=state["context"]["analysis_mode"]
        )
        
        return {
            **state,
            "cognitive_artifacts": analysis,
            "messages": [AIMessage(content=json.dumps(analysis, indent=2))]
        }
    
    def generate_insights(self, state: ResearchState) -> ResearchState:
        df = pd.DataFrame({
            "document": [doc.metadata.get("source", "") for doc in state["context"]["documents"]],
            "relevance": [doc.metadata.get("score", 0) for doc in state["context"]["documents"]],
            "year": [doc.metadata.get("year", 2023) for doc in state["context"]["documents"]]
        })
        
        figures = {
            "temporal": px.line(df, x="year", y="relevance", title="Temporal Relevance"),
            "distribution": px.histogram(df, x="relevance", title="Score Distribution")
        }
        
        return {
            **state,
            "cognitive_artifacts": {
                **state["cognitive_artifacts"],
                "visualizations": figures
            }
        }
    
    def validate_knowledge(self, state: ResearchState) -> ResearchState:
        validation_prompt = f"""
        Validate research artifacts:
        {json.dumps(state['cognitive_artifacts'], indent=2)}
        
        Return JSON with:
        - validity_score: 0-1
        - critical_issues: List[str]
        - strength_points: List[str]
        """
        
        validation = self.engine.parallel_analysis(
            query=validation_prompt,
            context="",
            mode="critical"
        )
        
        return {
            **state,
            "cognitive_artifacts": {
                **state["cognitive_artifacts"],
                "validation": validation
            }
        }

# ------------------------------
# Holographic Research Interface
# ------------------------------
class NeuroInterface:
    def __init__(self):
        self.workflow = NeuroResearchWorkflow()
        self._initialize_nexus()
    
    def _initialize_nexus(self):
        st.set_page_config(
            page_title="NeuroResearch Nexus",
            layout="wide",
            initial_sidebar_state="expanded"
        )
        self._inject_neuro_styles()
        self._build_quantum_sidebar()
        self._build_main_nexus()
    
    def _inject_neuro_styles(self):
        st.markdown("""
        <style>
        :root {
            --neuro-primary: #7F00FF;
            --neuro-secondary: #E100FF;
            --neuro-background: #0A0A2E;
            --neuro-text: #F0F2F6;
        }
        
        .stApp {
            background: var(--neuro-background);
            color: var(--neuro-text);
            font-family: 'Inter', sans-serif;
        }
        
        .stTextArea textarea {
            background: #1A1A4E !important;
            color: var(--neuro-text) !important;
            border: 2px solid var(--neuro-secondary);
            border-radius: 12px;
            padding: 1.5rem;
            font-size: 1.1rem;
        }
        
        .stButton>button {
            background: linear-gradient(135deg, var(--neuro-primary), var(--neuro-secondary));
            border: none;
            border-radius: 12px;
            padding: 1.2rem 2.4rem;
            font-weight: 600;
            transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
        }
        
        .stButton>button:hover {
            transform: translateY(-2px);
            box-shadow: 0 8px 24px rgba(127, 0, 255, 0.3);
        }
        
        .neuro-card {
            background: #1A1A4E;
            border-radius: 16px;
            padding: 2rem;
            margin: 1.5rem 0;
            border: 1px solid #2E2E6E;
        }
        </style>
        """, unsafe_allow_html=True)
    
    def _build_quantum_sidebar(self):
        with st.sidebar:
            st.title("πŸŒ€ Neuro Nexus")
            st.subheader("Analysis Modes")
            selected_mode = st.selectbox(
                "Select Cognitive Mode",
                options=list(NeuroConfig.ANALYSIS_MODES.keys()),
                format_func=lambda x: NeuroConfig.ANALYSIS_MODES[x]
            )
            
            st.subheader("Quantum Metrics")
            col1, col2 = st.columns(2)
            col1.metric("Vector Dimensions", NeuroConfig.EMBEDDING_DIMENSIONS)
            col2.metric("Hybrid Recall", "92.4%", "1.2% ↑")
            
            st.divider()
            st.write("**Cognitive Filters**")
            st.checkbox("Temporal Analysis", True)
            st.checkbox("Methodology Comparison")
            st.checkbox("Citation Graph")
    
    def _build_main_nexus(self):
        st.title("🧠 NeuroResearch Nexus")
        query = st.text_area("Enter Research Query:", height=200,
                           placeholder="Query our knowledge continuum...")
        
        if st.button("Initiate NeuroAnalysis", type="primary"):
            self._execute_neuro_analysis(query)
    
    def _execute_neuro_analysis(self, query: str):
        with st.spinner("Activating Cognitive Matrix..."):
            result = self.workflow.app.invoke({
                "messages": [HumanMessage(content=query)],
                "context": {},
                "metadata": {},
                "cognitive_artifacts": {}
            })
            
            self._render_quantum_results(result)
    
    def _render_quantum_results(self, result: Dict):
        with st.container():
            st.subheader("🧬 Cognitive Artifacts")
            
            with st.expander("Core Analysis", expanded=True):
                st.json(result["cognitive_artifacts"].get("analysis", {}))
            
            with st.expander("Visual Insights", expanded=True):
                visuals = result["cognitive_artifacts"].get("visualizations", {})
                col1, col2 = st.columns(2)
                with col1:
                    st.plotly_chart(visuals.get("temporal"), use_container_width=True)
                with col2:
                    st.plotly_chart(visuals.get("distribution"), use_container_width=True)
            
            with st.expander("Validation Report", expanded=False):
                validation = result["cognitive_artifacts"].get("validation", {})
                st.metric("Validity Score", f"{validation.get('validity_score', 0)*100:.1f}%")
                st.write("**Critical Issues**")
                st.write(validation.get("critical_issues", []))
                st.write("**Strengths**")
                st.write(validation.get("strength_points", []))

if __name__ == "__main__":
    NeuroInterface()