Spaces:
Running
Running
File size: 15,877 Bytes
09a0b53 9370b00 09a0b53 dd92890 0f83924 9370b00 dfecac2 9370b00 8588a31 dfecac2 bfe5a86 9370b00 dd92890 09a0b53 dd92890 3cf95b0 dfecac2 3cf95b0 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 9c89976 9370b00 bfe5a86 9370b00 9c89976 bfe5a86 9370b00 bfe5a86 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 dfecac2 9370b00 3cf95b0 9370b00 dfecac2 3cf95b0 fc628b4 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 dfecac2 bfe5a86 9370b00 bfe5a86 9370b00 3cf95b0 9370b00 dfecac2 9370b00 dfecac2 9370b00 dfecac2 9370b00 dfecac2 9370b00 dfecac2 9370b00 3cf95b0 9370b00 dfecac2 9370b00 3cf95b0 bfe5a86 3cf95b0 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 bfe5a86 9370b00 d94f105 09a0b53 9370b00 09a0b53 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 dfecac2 3cf95b0 9370b00 9c89976 3cf95b0 9370b00 3cf95b0 9370b00 dfecac2 9370b00 3cf95b0 dfecac2 9370b00 dfecac2 9370b00 3cf95b0 9370b00 3cf95b0 ddd0e04 09a0b53 9370b00 09a0b53 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 3cf95b0 9370b00 3cf95b0 dfecac2 3cf95b0 9370b00 3cf95b0 dfecac2 3cf95b0 9370b00 3cf95b0 dfecac2 9370b00 dfecac2 9370b00 dfecac2 9370b00 dfecac2 9370b00 b31058d 3cf95b0 9370b00 3cf95b0 9370b00 dfecac2 9370b00 3cf95b0 9370b00 ddd0e04 9370b00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
# ------------------------------
# NeuroResearch 2.0: Advanced Research Cognition System
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.retrievers import BM25Retriever
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import SemanticChunker
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence, Dict, List, Optional, Any, Tuple
import chromadb
import os
import streamlit as st
import requests
import hashlib
import json
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
import plotly.express as px
import pandas as pd
from rank_bm25 import BM25Okapi
from sentence_transformers import CrossEncoder
# ------------------------------
# Quantum Cognition Configuration
# ------------------------------
class NeuroConfig:
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
CHROMA_PATH = "neuro_db"
CHUNK_SIZE = 512
CHUNK_OVERLAP = 64
MAX_CONCURRENT_REQUESTS = 7
EMBEDDING_DIMENSIONS = 3072
HYBRID_RERANK_TOP_K = 15
ANALYSIS_MODES = {
"technical": "Deep Technical Analysis",
"comparative": "Cross-Paper Comparison",
"temporal": "Temporal Trend Analysis",
"critical": "Critical Literature Review"
}
CACHE_TTL = 3600 # 1 hour
# ------------------------------
# Quantum State Schema
# ------------------------------
class ResearchState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
context: Dict[str, Any]
metadata: Dict[str, Any]
cognitive_artifacts: Dict[str, Any]
# ------------------------------
# Neural Document Processor
# ------------------------------
class NeuralDocumentProcessor:
def __init__(self):
self.client = chromadb.PersistentClient(path=NeuroConfig.CHROMA_PATH)
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
dimensions=NeuroConfig.EMBEDDING_DIMENSIONS
)
self.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
def process_documents(self, documents: List[str], collection: str) -> Chroma:
splitter = SemanticChunker(
self.embeddings,
breakpoint_threshold_type="percentile",
breakpoint_threshold_amount=0.8
)
docs = splitter.create_documents(documents)
return Chroma.from_documents(
documents=docs,
embedding=self.embeddings,
client=self.client,
collection_name=collection,
ids=[self._quantum_id(doc.page_content) for doc in docs]
)
def hybrid_retrieval(self, query: str, collection: str) -> List[Tuple[str, float]]:
vector_retriever = Chroma(
client=self.client,
collection_name=collection,
embedding_function=self.embeddings
).as_retriever(search_kwargs={"k": NeuroConfig.HYBRID_RERANK_TOP_K})
bm25_retriever = BM25Retriever.from_documents(
vector_retriever.get()["documents"],
preprocess_func=lambda x: x.split()
)
vector_results = vector_retriever.invoke(query)
bm25_results = bm25_retriever.invoke(query)
combined = list({doc.page_content: doc for doc in vector_results + bm25_results}.values())
scores = self.cross_encoder.predict([(query, doc.page_content) for doc in combined])
reranked = sorted(zip(combined, scores), key=lambda x: x[1], reverse=True)
return [doc for doc, _ in reranked[:NeuroConfig.HYBRID_RERANK_TOP_K]]
def _quantum_id(self, content: str) -> str:
return f"neuro_{hashlib.sha3_256(content.encode()).hexdigest()[:24]}"
# ------------------------------
# Cognitive Processing Units
# ------------------------------
class NeuroAnalyticalEngine:
def __init__(self):
self.executor = ThreadPoolExecutor(max_workers=NeuroConfig.MAX_CONCURRENT_REQUESTS)
self.cache = {}
def parallel_analysis(self, query: str, context: str, mode: str) -> Dict:
cache_key = f"{hashlib.sha256(query.encode()).hexdigest()[:16]}_{mode}"
if cached := self.cache.get(cache_key):
if time.time() - cached["timestamp"] < NeuroConfig.CACHE_TTL:
return cached["response"]
futures = []
for _ in range(3):
futures.append(self.executor.submit(
self._cognitive_process,
query,
context,
mode
))
results = [f.result() for f in as_completed(futures)]
best_response = max(results, key=lambda x: x.get('quality_score', 0))
self.cache[cache_key] = {
"response": best_response,
"timestamp": time.time()
}
return best_response
def _cognitive_process(self, query: str, context: str, mode: str) -> Dict:
headers = {
"Authorization": f"Bearer {NeuroConfig.DEEPSEEK_API_KEY}",
"Content-Type": "application/json",
"X-Neuro-Mode": mode
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json={
"model": "deepseek-researcher-v2",
"messages": [{
"role": "system",
"content": f"""Perform {mode} analysis. Context:
{context}"""
}, {
"role": "user",
"content": query
}],
"temperature": 0.3 if mode == "technical" else 0.7,
"max_tokens": 2048,
"top_p": 0.95,
"response_format": {"type": "json_object"},
"seed": 42
},
timeout=60
)
response.raise_for_status()
analysis = json.loads(response.json()["choices"][0]["message"]["content"])
return {
**analysis,
"quality_score": self._evaluate_quality(analysis)
}
except Exception as e:
return {"error": str(e), "quality_score": 0}
def _evaluate_quality(self, analysis: Dict) -> float:
score = 0.0
score += len(analysis.get("key_points", [])) * 0.2
score += len(analysis.get("comparisons", [])) * 0.3
score += len(analysis.get("citations", [])) * 0.5
return min(score, 1.0)
# ------------------------------
# Advanced Research Workflow
# ------------------------------
class NeuroResearchWorkflow:
def __init__(self):
self.processor = NeuralDocumentProcessor()
self.engine = NeuroAnalyticalEngine()
self._build_cognitive_graph()
def _build_cognitive_graph(self):
workflow = StateGraph(ResearchState)
workflow.add_node("ingest", self.ingest_query)
workflow.add_node("retrieve", self.retrieve_documents)
workflow.add_node("analyze", self.analyze_content)
workflow.add_node("visualize", self.generate_insights)
workflow.add_node("validate", self.validate_knowledge)
workflow.set_entry_point("ingest")
workflow.add_edge("ingest", "retrieve")
workflow.add_edge("retrieve", "analyze")
workflow.add_edge("analyze", "visualize")
workflow.add_edge("visualize", "validate")
workflow.add_edge("validate", END)
self.app = workflow.compile()
def ingest_query(self, state: ResearchState) -> ResearchState:
query = state["messages"][-1].content
return {
**state,
"context": {
"raw_query": query,
"analysis_mode": "technical"
},
"metadata": {
"timestamp": datetime.now().isoformat(),
"session_id": hashlib.sha256(query.encode()).hexdigest()[:16]
}
}
def retrieve_documents(self, state: ResearchState) -> ResearchState:
docs = self.processor.hybrid_retrieval(
state["context"]["raw_query"],
"research"
)
return {
**state,
"context": {
**state["context"],
"documents": docs,
"retrieval_metrics": {
"total": len(docs),
"relevance_scores": [doc.metadata.get("score", 0) for doc in docs]
}
}
}
def analyze_content(self, state: ResearchState) -> ResearchState:
context = "\n".join([doc.page_content for doc in state["context"]["documents"]])
analysis = self.engine.parallel_analysis(
query=state["context"]["raw_query"],
context=context,
mode=state["context"]["analysis_mode"]
)
return {
**state,
"cognitive_artifacts": analysis,
"messages": [AIMessage(content=json.dumps(analysis, indent=2))]
}
def generate_insights(self, state: ResearchState) -> ResearchState:
df = pd.DataFrame({
"document": [doc.metadata.get("source", "") for doc in state["context"]["documents"]],
"relevance": [doc.metadata.get("score", 0) for doc in state["context"]["documents"]],
"year": [doc.metadata.get("year", 2023) for doc in state["context"]["documents"]]
})
figures = {
"temporal": px.line(df, x="year", y="relevance", title="Temporal Relevance"),
"distribution": px.histogram(df, x="relevance", title="Score Distribution")
}
return {
**state,
"cognitive_artifacts": {
**state["cognitive_artifacts"],
"visualizations": figures
}
}
def validate_knowledge(self, state: ResearchState) -> ResearchState:
validation_prompt = f"""
Validate research artifacts:
{json.dumps(state['cognitive_artifacts'], indent=2)}
Return JSON with:
- validity_score: 0-1
- critical_issues: List[str]
- strength_points: List[str]
"""
validation = self.engine.parallel_analysis(
query=validation_prompt,
context="",
mode="critical"
)
return {
**state,
"cognitive_artifacts": {
**state["cognitive_artifacts"],
"validation": validation
}
}
# ------------------------------
# Holographic Research Interface
# ------------------------------
class NeuroInterface:
def __init__(self):
self.workflow = NeuroResearchWorkflow()
self._initialize_nexus()
def _initialize_nexus(self):
st.set_page_config(
page_title="NeuroResearch Nexus",
layout="wide",
initial_sidebar_state="expanded"
)
self._inject_neuro_styles()
self._build_quantum_sidebar()
self._build_main_nexus()
def _inject_neuro_styles(self):
st.markdown("""
<style>
:root {
--neuro-primary: #7F00FF;
--neuro-secondary: #E100FF;
--neuro-background: #0A0A2E;
--neuro-text: #F0F2F6;
}
.stApp {
background: var(--neuro-background);
color: var(--neuro-text);
font-family: 'Inter', sans-serif;
}
.stTextArea textarea {
background: #1A1A4E !important;
color: var(--neuro-text) !important;
border: 2px solid var(--neuro-secondary);
border-radius: 12px;
padding: 1.5rem;
font-size: 1.1rem;
}
.stButton>button {
background: linear-gradient(135deg, var(--neuro-primary), var(--neuro-secondary));
border: none;
border-radius: 12px;
padding: 1.2rem 2.4rem;
font-weight: 600;
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 8px 24px rgba(127, 0, 255, 0.3);
}
.neuro-card {
background: #1A1A4E;
border-radius: 16px;
padding: 2rem;
margin: 1.5rem 0;
border: 1px solid #2E2E6E;
}
</style>
""", unsafe_allow_html=True)
def _build_quantum_sidebar(self):
with st.sidebar:
st.title("π Neuro Nexus")
st.subheader("Analysis Modes")
selected_mode = st.selectbox(
"Select Cognitive Mode",
options=list(NeuroConfig.ANALYSIS_MODES.keys()),
format_func=lambda x: NeuroConfig.ANALYSIS_MODES[x]
)
st.subheader("Quantum Metrics")
col1, col2 = st.columns(2)
col1.metric("Vector Dimensions", NeuroConfig.EMBEDDING_DIMENSIONS)
col2.metric("Hybrid Recall", "92.4%", "1.2% β")
st.divider()
st.write("**Cognitive Filters**")
st.checkbox("Temporal Analysis", True)
st.checkbox("Methodology Comparison")
st.checkbox("Citation Graph")
def _build_main_nexus(self):
st.title("π§ NeuroResearch Nexus")
query = st.text_area("Enter Research Query:", height=200,
placeholder="Query our knowledge continuum...")
if st.button("Initiate NeuroAnalysis", type="primary"):
self._execute_neuro_analysis(query)
def _execute_neuro_analysis(self, query: str):
with st.spinner("Activating Cognitive Matrix..."):
result = self.workflow.app.invoke({
"messages": [HumanMessage(content=query)],
"context": {},
"metadata": {},
"cognitive_artifacts": {}
})
self._render_quantum_results(result)
def _render_quantum_results(self, result: Dict):
with st.container():
st.subheader("𧬠Cognitive Artifacts")
with st.expander("Core Analysis", expanded=True):
st.json(result["cognitive_artifacts"].get("analysis", {}))
with st.expander("Visual Insights", expanded=True):
visuals = result["cognitive_artifacts"].get("visualizations", {})
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(visuals.get("temporal"), use_container_width=True)
with col2:
st.plotly_chart(visuals.get("distribution"), use_container_width=True)
with st.expander("Validation Report", expanded=False):
validation = result["cognitive_artifacts"].get("validation", {})
st.metric("Validity Score", f"{validation.get('validity_score', 0)*100:.1f}%")
st.write("**Critical Issues**")
st.write(validation.get("critical_issues", []))
st.write("**Strengths**")
st.write(validation.get("strength_points", []))
if __name__ == "__main__":
NeuroInterface() |