File size: 5,354 Bytes
c0032bb
58bda3d
 
 
 
 
c0032bb
58bda3d
c0032bb
58bda3d
 
 
 
8926c50
 
58bda3d
 
 
f156242
222fb9e
8926c50
58bda3d
 
c0032bb
f156242
58bda3d
8926c50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0032bb
5103548
58bda3d
c0032bb
3baa867
5103548
3baa867
 
58bda3d
c0032bb
 
f156242
c0032bb
 
58bda3d
0d2d9a0
f156242
 
 
5feda0d
0d2d9a0
5feda0d
20ae2d2
 
5feda0d
9cefd88
 
 
 
0d2d9a0
 
 
 
3e49218
0d2d9a0
 
 
edf4ae7
0d2d9a0
 
 
5feda0d
5103548
20ae2d2
5103548
 
58bda3d
20ae2d2
 
5103548
67df04a
5103548
 
9cefd88
 
 
 
 
 
5103548
0f9515d
5feda0d
0d2d9a0
5103548
5feda0d
0f9515d
5103548
0f9515d
 
 
c0032bb
5103548
c0032bb
 
5feda0d
0f9515d
c0032bb
5103548
c0032bb
58bda3d
0f9515d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
import torch
import pandas as pd
import numpy as np
from torch_geometric.data import Data
from torch_geometric.nn import GATConv
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
# Define the GATConv model architecture
class ModeratelySimplifiedGATConvModel(torch.nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels):
        super().__init__()
        self.conv1 = GATConv(in_channels, hidden_channels, heads=2)
        self.dropout1 = torch.nn.Dropout(0.45)
        self.conv2 = GATConv(hidden_channels * 2, out_channels, heads=1)

    def forward(self, x, edge_index, edge_attr=None):
        x = self.conv1(x, edge_index, edge_attr)
        x = torch.relu(x)
        x = self.dropout1(x)
        x = self.conv2(x, edge_index, edge_attr)
        return x

# Load the dataset and the GATConv model
data = torch.load("graph_data.pt", map_location=torch.device("cpu"))

# Correct the state dictionary's key names
original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu"))
corrected_state_dict = {}
for key, value in original_state_dict.items():
    if "lin.weight" in key:
        corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value
        corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value
    else:
        corrected_state_dict[key] = value

# Initialize the GATConv model with the corrected state dictionary
gatconv_model = ModeratelySimplifiedGATConvModel(
    in_channels=data.x.shape[1], hidden_channels=32, out_channels=768
)
gatconv_model.load_state_dict(corrected_state_dict)

# Load the BERT-based sentence transformer model
model_bert = SentenceTransformer("all-mpnet-base-v2")

# Ensure the DataFrame is loaded properly
try:
    df = pd.read_json("combined_data.json.gz", orient='records', lines=True, compression='gzip')
except Exception as e:
    print(f"Error reading JSON file: {e}")

# Generate GNN-based embeddings
with torch.no_grad():
    all_video_embeddings = gatconv_model(data.x, data.edge_index, data.edge_attr).cpu()

# Function to find the most similar video and recommend the top 10 based on GNN embeddings
def get_similar_and_recommend(input_text):
    # Find the most similar video based on cosine similarity
    embeddings_matrix = np.array(df["embeddings"].tolist())
    input_embedding = model_bert.encode([input_text])[0]
    similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]

    most_similar_index = np.argmax(similarities)  # Find the most similar video

    # Get all features of the most similar video
    most_similar_video_features = df.iloc[most_similar_index].to_dict()

    if "text_for_embedding" in most_similar_video_features:
        del most_similar_video_features["text_for_embedding"]
    if "embeddings" in most_similar_video_features:
        del most_similar_video_features["embeddings"]
    # Recommend the top 10 videos based on GNN embeddings
    def recommend_top_10(given_video_index, all_video_embeddings):
        dot_products = [
            torch.dot(all_video_embeddings[given_video_index], all_video_embeddings[i])
            for i in range(all_video_embeddings.shape[0])
        ]
        dot_products[given_video_index] = -float("inf")  # Exclude the most similar video

        top_10_indices = np.argsort(dot_products)[::-1][:10]
        return [df.iloc[idx].to_dict() for idx in top_10_indices]

    top_10_recommended_videos_features = recommend_top_10(most_similar_index, all_video_embeddings)

    # Apply search context to determine weights for GNN results
    user_keywords = input_text.split()  # Create a list of keywords from user input
    video_weights = []
    weight = 1.0  # Initial weight factor

    for keyword in user_keywords:
        if keyword.lower() in df["title"].str.lower().tolist():  # Check for matching keywords
            weight += 0.1  # Increase weight for matching keyword

    # Calculate the weight for each GNN output
    video_weights = [weight] * len(top_10_recommended_videos_features)
    # Exclude unwanted features for recommended videos
    for recommended_video in top_10_recommended_videos_features:
        if "text_for_embedding" in recommended_video:
            del recommended_video["text_for_embedding"]
        if "embeddings" in recommended_video:
            del recommended_video["embeddings"]
    # Create the output JSON with the most similar video, final recommendations, and weights
    output = {
        "search_context": {
            "input_text": input_text,  # What the user provided
            "weights": video_weights,  # Weights for each GNN-based recommendation
        },
        "most_similar_video": most_similar_video_features,
        "final_recommendations": top_10_recommended_videos_features,  # Top 10 recommendations
    }

    return output

# Update the Gradio interface to output JSON with detailed context
interface = gr.Interface(
    fn=get_similar_and_recommend,
    inputs=gr.Textbox(label="Enter Text to Find Most Similar Video"),
    outputs=gr.JSON(),
    title="Video Recommendation System with GNN-based Recommendations",
    description="Enter text to find the most similar video and get top 10 recommended videos with individual weights for each recommendation.",
)

interface.launch()