Spaces:
Sleeping
Sleeping
File size: 5,354 Bytes
c0032bb 58bda3d c0032bb 58bda3d c0032bb 58bda3d 8926c50 58bda3d f156242 222fb9e 8926c50 58bda3d c0032bb f156242 58bda3d 8926c50 c0032bb 5103548 58bda3d c0032bb 3baa867 5103548 3baa867 58bda3d c0032bb f156242 c0032bb 58bda3d 0d2d9a0 f156242 5feda0d 0d2d9a0 5feda0d 20ae2d2 5feda0d 9cefd88 0d2d9a0 3e49218 0d2d9a0 edf4ae7 0d2d9a0 5feda0d 5103548 20ae2d2 5103548 58bda3d 20ae2d2 5103548 67df04a 5103548 9cefd88 5103548 0f9515d 5feda0d 0d2d9a0 5103548 5feda0d 0f9515d 5103548 0f9515d c0032bb 5103548 c0032bb 5feda0d 0f9515d c0032bb 5103548 c0032bb 58bda3d 0f9515d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import gradio as gr
import torch
import pandas as pd
import numpy as np
from torch_geometric.data import Data
from torch_geometric.nn import GATConv
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
# Define the GATConv model architecture
class ModeratelySimplifiedGATConvModel(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super().__init__()
self.conv1 = GATConv(in_channels, hidden_channels, heads=2)
self.dropout1 = torch.nn.Dropout(0.45)
self.conv2 = GATConv(hidden_channels * 2, out_channels, heads=1)
def forward(self, x, edge_index, edge_attr=None):
x = self.conv1(x, edge_index, edge_attr)
x = torch.relu(x)
x = self.dropout1(x)
x = self.conv2(x, edge_index, edge_attr)
return x
# Load the dataset and the GATConv model
data = torch.load("graph_data.pt", map_location=torch.device("cpu"))
# Correct the state dictionary's key names
original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu"))
corrected_state_dict = {}
for key, value in original_state_dict.items():
if "lin.weight" in key:
corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value
corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value
else:
corrected_state_dict[key] = value
# Initialize the GATConv model with the corrected state dictionary
gatconv_model = ModeratelySimplifiedGATConvModel(
in_channels=data.x.shape[1], hidden_channels=32, out_channels=768
)
gatconv_model.load_state_dict(corrected_state_dict)
# Load the BERT-based sentence transformer model
model_bert = SentenceTransformer("all-mpnet-base-v2")
# Ensure the DataFrame is loaded properly
try:
df = pd.read_json("combined_data.json.gz", orient='records', lines=True, compression='gzip')
except Exception as e:
print(f"Error reading JSON file: {e}")
# Generate GNN-based embeddings
with torch.no_grad():
all_video_embeddings = gatconv_model(data.x, data.edge_index, data.edge_attr).cpu()
# Function to find the most similar video and recommend the top 10 based on GNN embeddings
def get_similar_and_recommend(input_text):
# Find the most similar video based on cosine similarity
embeddings_matrix = np.array(df["embeddings"].tolist())
input_embedding = model_bert.encode([input_text])[0]
similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
most_similar_index = np.argmax(similarities) # Find the most similar video
# Get all features of the most similar video
most_similar_video_features = df.iloc[most_similar_index].to_dict()
if "text_for_embedding" in most_similar_video_features:
del most_similar_video_features["text_for_embedding"]
if "embeddings" in most_similar_video_features:
del most_similar_video_features["embeddings"]
# Recommend the top 10 videos based on GNN embeddings
def recommend_top_10(given_video_index, all_video_embeddings):
dot_products = [
torch.dot(all_video_embeddings[given_video_index], all_video_embeddings[i])
for i in range(all_video_embeddings.shape[0])
]
dot_products[given_video_index] = -float("inf") # Exclude the most similar video
top_10_indices = np.argsort(dot_products)[::-1][:10]
return [df.iloc[idx].to_dict() for idx in top_10_indices]
top_10_recommended_videos_features = recommend_top_10(most_similar_index, all_video_embeddings)
# Apply search context to determine weights for GNN results
user_keywords = input_text.split() # Create a list of keywords from user input
video_weights = []
weight = 1.0 # Initial weight factor
for keyword in user_keywords:
if keyword.lower() in df["title"].str.lower().tolist(): # Check for matching keywords
weight += 0.1 # Increase weight for matching keyword
# Calculate the weight for each GNN output
video_weights = [weight] * len(top_10_recommended_videos_features)
# Exclude unwanted features for recommended videos
for recommended_video in top_10_recommended_videos_features:
if "text_for_embedding" in recommended_video:
del recommended_video["text_for_embedding"]
if "embeddings" in recommended_video:
del recommended_video["embeddings"]
# Create the output JSON with the most similar video, final recommendations, and weights
output = {
"search_context": {
"input_text": input_text, # What the user provided
"weights": video_weights, # Weights for each GNN-based recommendation
},
"most_similar_video": most_similar_video_features,
"final_recommendations": top_10_recommended_videos_features, # Top 10 recommendations
}
return output
# Update the Gradio interface to output JSON with detailed context
interface = gr.Interface(
fn=get_similar_and_recommend,
inputs=gr.Textbox(label="Enter Text to Find Most Similar Video"),
outputs=gr.JSON(),
title="Video Recommendation System with GNN-based Recommendations",
description="Enter text to find the most similar video and get top 10 recommended videos with individual weights for each recommendation.",
)
interface.launch()
|