File size: 24,972 Bytes
58cea02 91e473e d765ee8 0841c51 38d3f0b 0841c51 910ce9f 0841c51 910ce9f 69590e2 e04a121 38d3f0b e04a121 0841c51 dc9501e 869c271 48da594 869c271 7365d98 629cb6e ceb4948 869c271 629cb6e 869c271 0841c51 58cea02 9c7e08b 45a70a9 1748ccd d18e5a9 8f424e5 0841c51 58cea02 4ad4038 8e43993 d04558f 58cea02 1666aa7 7de18e9 1689df1 7829724 f543677 d69a1b2 624ddbc d69a1b2 31c912d f543677 e04a121 7829724 d69a1b2 7829724 8a1f473 7829724 c1c18f8 7829724 e04a121 7829724 8b08b1a a692d2e 1666aa7 0841c51 41768e4 a34bb65 6e5cc93 996f8cb a34bb65 a692d2e 21f63dc a692d2e 41768e4 b5afac7 6e5cc93 f9e16b0 b5afac7 928ec6e a692d2e 440bba8 a692d2e 68d3916 e7e2a49 5b9c82c 68d3916 1854e4d 9f87d22 28939d0 9f87d22 1854e4d 28939d0 9f87d22 28939d0 5d76637 59dc088 d765ee8 18b59a2 d765ee8 18b59a2 d765ee8 59dc088 d765ee8 18b59a2 d765ee8 18b59a2 d765ee8 59dc088 3b3771c 59dc088 76d511e 59dc088 16fbcab 6db62f0 f49d54b f56fa41 abd1ae1 f56fa41 55a782f f56fa41 16fbcab 96d409b 1817a5f 0d01fa6 6e8cffc 886a898 6e8cffc 4ac617e fe3cdfc 9d1f51c 4ac617e 5f539f7 4ac617e fe3cdfc 9d1f51c 4ac617e 0b7d1f5 4ac617e dee19f8 fe3cdfc dee19f8 16aefb8 6e8cffc 8aaea01 6e8cffc 5f539f7 0b7d1f5 dee19f8 8aaea01 dee19f8 5f539f7 6e8cffc a19edd8 6e8cffc a19edd8 6e8cffc a19edd8 9da8f46 a19edd8 857c2eb 6e8cffc 89f3a60 6e8cffc 8f424e5 6e8cffc 6594d81 8e02398 6594d81 a19edd8 6e8cffc f0a2361 6e8cffc 9792614 0406a82 81184ae f0a2361 8e02398 6e8cffc 9792614 6e8cffc df8ffd8 6e8cffc 9792614 8e622a8 81184ae f0a2361 8e02398 6e8cffc 9792614 6e8cffc 1748ccd 6e8cffc 8f424e5 fa28f02 8f424e5 fa28f02 8f424e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
from rapidfuzz import process, fuzz
from collections import Counter
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
from datetime import datetime
def init_conn():
uri = st.secrets['mongo_uri']
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client['Contest_Information']
return db
def grab_contest_names(db, sport, type):
if type == 'Classic':
db_type = 'reg'
elif type == 'Showdown':
db_type = 'sd'
collection = db[f'{sport}_{db_type}_contest_info']
cursor = collection.find()
curr_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
curr_info['Date'] = pd.to_datetime(curr_info['Contest Date'].sort_values(ascending = False))
curr_info['Date'] = curr_info['Date'].dt.strftime('%Y-%m-%d')
contest_names = curr_info['Contest Name'] + ' - ' + curr_info['Date']
return contest_names, curr_info
def grab_contest_player_info(db, sport, type, contest_date, contest_name, contest_id_map):
if type == 'Classic':
db_type = 'reg'
elif type == 'Showdown':
db_type = 'showdown'
collection = db[f'{sport}_{db_type}_player_info']
cursor = collection.find()
player_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
player_info = player_info[player_info['Contest Date'] == contest_date]
player_info = player_info.rename(columns={'Display Name': 'Player'})
player_info = player_info.sort_values(by='Salary', ascending=True).drop_duplicates(subset='Player', keep='first')
info_maps = {
'position_dict': dict(zip(player_info['Player'], player_info['Position'])),
'salary_dict': dict(zip(player_info['Player'], player_info['Salary'])),
'team_dict': dict(zip(player_info['Player'], player_info['Team'])),
'opp_dict': dict(zip(player_info['Player'], player_info['Opp'])),
'fpts_avg_dict': dict(zip(player_info['Player'], player_info['Avg FPTS']))
}
return player_info, info_maps
db = init_conn()
## import global functions
from global_func.load_contest_file import load_contest_file
from global_func.create_player_exposures import create_player_exposures
from global_func.create_stack_exposures import create_stack_exposures
from global_func.create_stack_size_exposures import create_stack_size_exposures
from global_func.create_general_exposures import create_general_exposures
from global_func.grab_contest_data import grab_contest_data
def is_valid_input(file):
if isinstance(file, pd.DataFrame):
return not file.empty
else:
return file is not None # For Streamlit uploader objects
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}
tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"])
with tab1:
col1, col2 = st.columns(2)
with col1:
if st.button('Clear data', key='reset1'):
st.session_state.clear()
search_options, sport_options, date_options = st.columns(3)
with search_options:
parse_type = st.selectbox("Manual upload or DB search?", ['Manual', 'DB Search'], key='parse_type')
with sport_options:
sport_select = st.selectbox("Select Sport", ['MLB', 'MMA', 'GOLF', 'NBA', 'NHL'], key='sport_select')
type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'], key='type_var')
contest_names, curr_info = grab_contest_names(db, sport_select, type_var)
with date_options:
date_list = curr_info['Date'].sort_values(ascending=False).unique()
date_list = date_list[date_list != pd.Timestamp.today().strftime('%Y-%m-%d')]
date_select = st.selectbox("Select Date", date_list, key='date_select')
date_select2 = (pd.to_datetime(date_select) + pd.Timedelta(days=1)).strftime('%Y-%m-%d')
name_parse = curr_info[curr_info['Date'] == date_select]['Contest Name'].reset_index(drop=True)
contest_id_map = dict(zip(name_parse, curr_info[curr_info['Date'] == date_select]['Contest ID']))
date_select = date_select.replace('-', '')
date_select2 = date_select2.replace('-', '')
contest_name_var = st.selectbox("Select Contest to load", name_parse)
if parse_type == 'DB Search':
if 'Contest_file_helper' in st.session_state:
del st.session_state['Contest_file_helper']
if 'Contest_file' in st.session_state:
del st.session_state['Contest_file']
if 'Contest_file' not in st.session_state:
if st.button('Load Contest Data', key='load_contest_data'):
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map)
st.session_state['Contest_file'] = grab_contest_data(sport_select, contest_name_var, contest_id_map, date_select, date_select2)
else:
pass
with col2:
st.info(f"If you are manually loading and do not have the results CSV for the contest you selected, you can find it here: https://www.draftkings.com/contest/gamecenter/{contest_id_map[contest_name_var]}#/")
if parse_type == 'Manual':
if 'Contest_file_helper' in st.session_state:
del st.session_state['Contest_file_helper']
if 'Contest_file' in st.session_state:
del st.session_state['Contest_file']
if 'Contest_file' not in st.session_state:
st.session_state['Contest_upload'] = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map)
try:
st.session_state['Contest_file'] = pd.read_csv(st.session_state['Contest_upload'])
except:
st.warning('Please upload a Contest CSV')
else:
pass
if 'Contest_file' in st.session_state:
st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['entry_list'], check_lineups = load_contest_file(st.session_state['Contest_file'], type_var, st.session_state['player_info'], sport_select)
st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
if st.session_state['Contest'] is not None:
st.success('Contest file loaded successfully!')
st.dataframe(st.session_state['Contest'].head(100))
if 'Contest_file' in st.session_state:
st.session_state['ownership_dict'] = dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own']))
st.session_state['actual_dict'] = dict(zip(st.session_state['actual_df']['Player'], st.session_state['actual_df']['FPTS']))
st.session_state['salary_dict'] = st.session_state['info_maps']['salary_dict']
st.session_state['team_dict'] = st.session_state['info_maps']['team_dict']
st.session_state['pos_dict'] = st.session_state['info_maps']['position_dict']
with tab2:
excluded_cols = ['BaseName', 'EntryCount']
if 'Contest' in st.session_state:
player_columns = [col for col in st.session_state['Contest'].columns if col not in excluded_cols]
for col in player_columns:
st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str)
# Create mapping dictionaries
map_dict = {
'pos_map': st.session_state['pos_dict'],
'team_map': st.session_state['team_dict'],
'salary_map': st.session_state['salary_dict'],
'own_map': st.session_state['ownership_dict'],
'own_percent_rank': dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'].rank(pct=True)))
}
# Create a copy of the dataframe for calculations
working_df = st.session_state['Contest'].copy()
if type_var == 'Classic':
working_df['stack'] = working_df.apply(
lambda row: Counter(
map_dict['team_map'].get(player, '') for player in row[4:]
if map_dict['team_map'].get(player, '') != ''
).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
axis=1
)
working_df['stack_size'] = working_df.apply(
lambda row: Counter(
map_dict['team_map'].get(player, '') for player in row[4:]
if map_dict['team_map'].get(player, '') != ''
).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
axis=1
)
working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
working_df['sorted'] = working_df[player_columns].apply(
lambda row: ','.join(sorted(row.values)),
axis=1
)
working_df['dupes'] = working_df.groupby('sorted').transform('size')
working_df = working_df.reset_index()
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
working_df['finish'] = working_df['index']
working_df = working_df.drop(['sorted', 'index'], axis=1)
elif type_var == 'Showdown':
working_df['stack'] = working_df.apply(
lambda row: Counter(
map_dict['team_map'].get(player, '') for player in row[2:]
if map_dict['team_map'].get(player, '') != ''
).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[2:]) else '',
axis=1
)
working_df['stack_size'] = working_df.apply(
lambda row: Counter(
map_dict['team_map'].get(player, '') for player in row[2:]
if map_dict['team_map'].get(player, '') != ''
).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[2:]) else '',
axis=1
)
# Modified salary calculation with 1.5x multiplier for first player
working_df['salary'] = working_df.apply(
lambda row: (map_dict['salary_map'].get(row[2], 0) * 1.5) +
sum(map_dict['salary_map'].get(player, 0) for player in row[3:]),
axis=1
)
# Modified actual_fpts calculation with 1.5x multiplier for first player
working_df['actual_fpts'] = working_df.apply(
lambda row: (st.session_state['actual_dict'].get(row[2], 0) * 1.5) +
sum(st.session_state['actual_dict'].get(player, 0) for player in row[3:]),
axis=1
)
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
working_df['sorted'] = working_df[player_columns].apply(
lambda row: ','.join(sorted(row.values)),
axis=1
)
working_df['dupes'] = working_df.groupby('sorted').transform('size')
# For uniques - count how many unique lineups (dupes == 1) each BaseName has
working_df['uniques'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] == 1).sum()
).reindex(working_df['BaseName']).values
# For under_5 - count how many lineups with 5 or fewer duplicates each BaseName has
working_df['under_5'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] <= 5).sum()
).reindex(working_df['BaseName']).values
working_df = working_df.reset_index()
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
working_df['finish'] = working_df['index']
working_df = working_df.drop(['sorted', 'index'], axis=1)
# working_df['stack_size'] = working_df['stack_size'].fillna(1).astype(int)
st.session_state['field_player_frame'] = create_player_exposures(working_df, player_columns)
st.session_state['field_stack_frame'] = create_stack_exposures(working_df)
with st.expander("Info and filters"):
st.info("Note that any filtering here needs to be reset manually, i.e. if you parse down the specific users and want to reset the table, just backtrack your filtering by setting it back to 'All'")
if st.button('Clear data', key='reset3'):
st.session_state.clear()
with st.form(key='filter_form'):
users_var, entries_var, stack_var, stack_size_var, player_var = st.columns(5)
with users_var:
entry_parse_var = st.selectbox("Do you want to view a specific user(s)?", ['All', 'Specific'], key = 'entry_parse_var')
entry_names = st.multiselect("Select players", options=st.session_state['entry_list'], default=[], key = 'entry_names')
with entries_var:
low_entries_var = st.number_input("Low end of entries range", min_value=0, max_value=150, value=1, key = 'low_entries_var')
high_entries_var = st.number_input("High end of entries range", min_value=0, max_value=150, value=150, key = 'high_entries_var')
with stack_var:
stack_parse_var = st.selectbox("Do you want to view lineups with specific team(s)?", ['All', 'Specific'], key = 'stack_parse_var')
stack_names = st.multiselect("Select teams", options=working_df['stack'].unique(), default=[], key = 'stack_names')
with stack_size_var:
stack_size_parse_var = st.selectbox("Do you want to view a specific stack size(s)?", ['All', 'Specific'], key = 'stack_size_parse_var')
stack_size_names = st.multiselect("Select stack sizes", options=working_df['stack_size'].unique(), default=[], key = 'stack_size_names')
with player_var:
unique_players = pd.unique(working_df[player_columns].values.ravel('K'))
unique_players = [p for p in unique_players if p != 'nan'] # Remove any NaN values
player_parse_var = st.selectbox("Do you want to view lineups with specific player(s)?", ['All', 'Specific'], key = 'player_parse_var')
player_names = st.multiselect("Select players", options=unique_players, default=[], key = 'player_names')
submitted = st.form_submit_button("Submit")
if submitted:
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
if entry_parse_var == 'Specific' and entry_names:
working_df = working_df[working_df['BaseName'].isin(entry_names)]
if stack_parse_var == 'Specific' and stack_names:
working_df = working_df[working_df['stack'].isin(stack_names)]
if stack_size_parse_var == 'Specific' and stack_size_names:
working_df = working_df[working_df['stack_size'].isin(stack_size_names)]
if player_parse_var == 'Specific' and player_names:
mask = working_df[player_columns].apply(lambda row: all(player in row.values for player in player_names), axis=1)
working_df = working_df[mask]
if low_entries_var and high_entries_var:
working_df = working_df[working_df['EntryCount'].between(low_entries_var, high_entries_var)]
# Initialize pagination in session state if not exists
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
# Calculate total pages
rows_per_page = 500
total_rows = len(working_df)
total_pages = (total_rows + rows_per_page - 1) // rows_per_page
# Create pagination controls in a single row
pagination_cols = st.columns([4, 1, 1, 1, 4])
with pagination_cols[1]:
if st.button(f"Previous Page"):
if st.session_state['current_page'] > 1:
st.session_state.current_page -= 1
else:
st.session_state.current_page = 1
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
with pagination_cols[3]:
if st.button(f"Next Page"):
st.session_state.current_page += 1
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
# Calculate start and end indices for current page
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = min((st.session_state.current_page) * rows_per_page, total_rows)
st.dataframe(
working_df.iloc[start_idx:end_idx].style
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.format(precision=2),
height=500,
use_container_width=True,
hide_index=True
)
with st.container():
tab1, tab2, tab3, tab4 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info', 'General Info'])
with tab1:
with st.form(key='player_info_pos_form'):
col1, col2 = st.columns(2)
with col1:
pos_var = st.selectbox("Which position(s) would you like to view?", ['All', 'Specific'], key='pos_var')
with col2:
pos_select = st.multiselect("Select your position(s)", ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_select')
submitted = st.form_submit_button("Submit")
if submitted:
if pos_var == 'Specific':
pos_select = pos_select
else:
pos_select = None
if entry_parse_var == 'All':
st.session_state['player_frame'] = create_player_exposures(working_df, player_columns)
hold_frame = st.session_state['player_frame'].copy()
if sport_select == 'GOLF':
hold_frame['Pos'] = 'G'
else:
hold_frame['Pos'] = hold_frame['Player'].map(map_dict['pos_map'])
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
if pos_select:
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
st.dataframe(st.session_state['player_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
hide_index=True)
else:
st.session_state['player_frame'] = create_player_exposures(working_df, player_columns, entry_names)
hold_frame = st.session_state['player_frame'].copy()
if sport_select == 'GOLF':
hold_frame['Pos'] = 'G'
else:
hold_frame['Pos'] = hold_frame['Player'].map(map_dict['pos_map'])
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
if pos_select:
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
st.dataframe(st.session_state['player_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
hide_index=True)
with tab2:
if entry_parse_var == 'All':
st.session_state['stack_frame'] = create_stack_exposures(working_df)
st.dataframe(st.session_state['stack_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
else:
st.session_state['stack_frame'] = create_stack_exposures(working_df, entry_names)
st.dataframe(st.session_state['stack_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
with tab3:
if entry_parse_var == 'All':
st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df)
st.dataframe(st.session_state['stack_size_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
else:
st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df, entry_names)
st.dataframe(st.session_state['stack_size_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
with tab4:
if entry_parse_var == 'All':
st.session_state['general_frame'] = create_general_exposures(working_df)
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)
else:
st.session_state['general_frame'] = create_general_exposures(working_df, entry_names)
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)
|