File size: 16,846 Bytes
58cea02
 
 
 
 
 
d765ee8
58cea02
 
9c7e08b
58cea02
 
45a70a9
1748ccd
d18e5a9
58cea02
8e43993
be6c88d
 
8e43993
d04558f
58cea02
 
 
6a12985
0d01fa6
 
 
 
 
58cea02
265f036
58cea02
1689df1
5db8a23
 
 
 
 
 
 
63c301f
 
 
 
5db8a23
63c301f
58cea02
1689df1
58cea02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63c301f
 
58cea02
63c301f
68d3916
356c7d4
1e6d51e
6a12985
1e6d51e
 
 
63c301f
68d3916
 
1854e4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59dc088
1854e4d
59dc088
 
d765ee8
18b59a2
d765ee8
18b59a2
d765ee8
 
59dc088
d765ee8
18b59a2
d765ee8
18b59a2
d765ee8
 
59dc088
 
3b3771c
59dc088
3b3771c
59dc088
76d511e
 
 
59dc088
16fbcab
6db62f0
f49d54b
16fbcab
59dc088
 
76d511e
 
 
 
 
 
59dc088
76d511e
 
 
 
 
 
59dc088
6d04e58
 
 
 
59dc088
6d04e58
 
 
 
59dc088
6d04e58
 
 
 
59dc088
76d511e
 
 
59dc088
16fbcab
6db62f0
3213b6b
16fbcab
1817a5f
 
0d01fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f978d14
89f3a60
 
 
a19edd8
89f3a60
 
 
 
a19edd8
89f3a60
 
 
 
 
 
 
 
a19edd8
 
9da8f46
a19edd8
857c2eb
89f3a60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19edd8
89f3a60
d18e5a9
89f3a60
1748ccd
89f3a60
 
6d2f6bb
89f3a60
 
d08e204
3e312de
89f3a60
 
6d2f6bb
89f3a60
 
d08e204
3e312de
89f3a60
1748ccd
89f3a60
1748ccd
6d2f6bb
89f3a60
 
d08e204
89f3a60
 
1748ccd
6d2f6bb
89f3a60
 
d08e204
89f3a60
 
d18e5a9
 
 
 
 
 
d08e204
d18e5a9
 
 
 
 
 
d08e204
d18e5a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import time
from fuzzywuzzy import process
from collections import Counter

## import global functions
from global_func.load_contest_file import load_contest_file
from global_func.load_file import load_file
from global_func.find_name_mismatches import find_name_mismatches
from global_func.create_player_exposures import create_player_exposures
from global_func.create_stack_exposures import create_stack_exposures
from global_func.create_stack_size_exposures import create_stack_size_exposures

player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}
if 'calc_toggle' not in st.session_state:
    st.session_state['calc_toggle'] = False

tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"])
with tab1:
    if st.button('Clear data', key='reset1'):
        st.session_state.clear()
    st.session_state['calc_toggle'] = False
    col1, col2 = st.columns(2)
    with col1:
        sport_select = st.selectbox("Select Sport", ['MLB', 'NBA', 'NFL'])
    with col2:
        type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'])
    # Add file uploaders to your app
    col1, col2 = st.columns(2)
    
    with col1:
        st.subheader("Contest File")
        st.info("Go ahead and upload a Contest file here. Only include player columns and an optional 'Stack' column if you are playing MLB.")
        Contest_file = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
        if 'Contest' in st.session_state:
            del st.session_state['Contest']

        if Contest_file:
            st.session_state['Contest'], st.session_state['ownership_dict'], st.session_state['actual_dict'], st.session_state['entry_list'] = load_contest_file(Contest_file, sport_select)
            st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
            st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
            if st.session_state['Contest'] is not None:
                st.success('Contest file loaded successfully!')
                st.dataframe(st.session_state['Contest'].head(10))

    with col2:
        st.subheader("Projections File")
        st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' (Needed for Showdown) columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.")
        
        # Create two columns for the uploader and template button
        upload_col, template_col = st.columns([3, 1])
        
        with upload_col:
            projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
            if 'projections_df' in st.session_state:
                del st.session_state['projections_df']
        
        with template_col:
            # Create empty DataFrame with required columns
            template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership'])
            # Add download button for template
            st.download_button(
                label="Template",
                data=template_df.to_csv(index=False),
                file_name="projections_template.csv",
                mime="text/csv"
            )
            
        if projections_file:
            export_projections, st.session_state['projections_df'] = load_file(projections_file)
            if st.session_state['projections_df'] is not None:
                st.success('Projections file loaded successfully!')
                st.dataframe(st.session_state['projections_df'].head(10))
        
    if Contest_file and projections_file:
        st.subheader("Name Matching functions")
        st.session_state['Contest'], st.session_state['projections_df'], st.session_state['ownership_dict'], st.session_state['actual_dict'], st.session_state['calc_toggle'] = find_name_mismatches(st.session_state['Contest'], st.session_state['projections_df'], st.session_state['ownership_dict'], st.session_state['actual_dict'], st.session_state['calc_toggle'])
        st.session_state['projections_df']['salary'] = (st.session_state['projections_df']['salary'].astype(str).str.replace(',', '').astype(float).astype(int))
        st.session_state['ownership_dict'] = dict(zip(st.session_state['ownership_dict']['Player'], st.session_state['ownership_dict']['Own']))
        st.session_state['actual_dict'] = dict(zip(st.session_state['actual_dict']['Player'], st.session_state['actual_dict']['FPTS']))


with tab2:
    excluded_cols = ['BaseName', 'EntryCount']
    player_columns = [col for col in st.session_state['Contest'].columns if col not in excluded_cols]
    for col in player_columns:
        st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str)
    
    # Create mapping dictionaries
    map_dict = {
        'pos_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
        'team_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
        'salary_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
        'proj_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
        'own_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
        'own_percent_rank': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
        'cpt_salary_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
        'cpt_proj_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
        'cpt_own_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
    }
    # Create a copy of the dataframe for calculations
    working_df = st.session_state['Contest'].copy()

    if 'Contest' in st.session_state and 'projections_df' in st.session_state and st.session_state['calc_toggle']:    
        if type_var == 'Classic':
            working_df['stack'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row[4:]
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
                axis=1
            )
            working_df['stack_size'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row[4:]
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
                axis=1
            )
            working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
            working_df['median'] = working_df.apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
            working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
            working_df['Own'] = working_df.apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
            working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
            working_df['sorted'] = working_df[player_columns].apply(
                lambda row: ','.join(sorted(row.values)),
                axis=1
            )
            working_df['dupes'] = working_df.groupby('sorted').transform('size')
            working_df = working_df.reset_index()
            working_df['percentile_finish'] = working_df['index'].rank(pct=True)
            working_df['finish'] = working_df['index']
            working_df = working_df.drop(['sorted', 'index'], axis=1)
        elif type_var == 'Showdown':
            working_df['stack'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row) else '',
                axis=1
            )
            working_df['stack_size'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row) else '',
                axis=1
            )
            working_df['salary'] = working_df.apply(
                lambda row: map_dict['cpt_salary_map'].get(row.iloc[0], 0) + 
                            sum(map_dict['salary_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
            working_df['median'] = working_df.apply(
                lambda row: map_dict['cpt_proj_map'].get(row.iloc[0], 0) + 
                            sum(map_dict['proj_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
            working_df['Own'] = working_df.apply(
                lambda row: map_dict['cpt_own_map'].get(row.iloc[0], 0) + 
                            sum(map_dict['own_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
            working_df['sorted'] = working_df[player_columns].apply(
                lambda row: row[0] + '|' + ','.join(sorted(row[1:].values)),
                axis=1
            )
            working_df['dupes'] = working_df.groupby('sorted').transform('size')
            working_df = working_df.reset_index()
            working_df['percentile_finish'] = working_df['index'].rank(pct=True)
            working_df['finish'] = working_df['index']
            working_df = working_df.drop(['sorted', 'index'], axis=1)
        st.session_state['field_player_frame'] = create_player_exposures(working_df, player_columns)
        st.session_state['field_stack_frame'] = create_stack_exposures(working_df)

    with st.expander("Info and filters"):
        if st.button('Clear data', key='reset3'):
            st.session_state.clear()
        with st.form(key='filter_form'):
            entry_parse_var = st.selectbox("Do you want to view a specific player(s) or a group of players?", ['All', 'Specific'])
            entry_names = st.multiselect("Select players", options=st.session_state['entry_list'], default=[])
            submitted = st.form_submit_button("Submit")
            if submitted:
                if 'player_frame' in st.session_state:
                    del st.session_state['player_frame']
                if 'stack_frame' in st.session_state:
                    del st.session_state['stack_frame']
                # Apply entry name filter if specific entries are selected
                if entry_parse_var == 'Specific' and entry_names:
                    working_df = working_df[working_df['BaseName'].isin(entry_names)]
                    st.session_state['calc_toggle'] = True
                elif entry_parse_var == 'All':
                    st.session_state['calc_toggle'] = True
        
    # Initialize pagination in session state if not exists
    if 'current_page' not in st.session_state:
        st.session_state.current_page = 1

    # Calculate total pages
    rows_per_page = 500
    total_rows = len(working_df)
    total_pages = (total_rows + rows_per_page - 1) // rows_per_page

    # Create pagination controls in a single row
    pagination_cols = st.columns([4, 1, 1, 1, 4])
    with pagination_cols[1]:
        if st.button(f"Previous Page"):
            if st.session_state['current_page'] > 1:
                st.session_state.current_page -= 1
            else:
                st.session_state.current_page = 1
                if 'player_frame' in st.session_state:
                    del st.session_state['player_frame']
                if 'stack_frame' in st.session_state:
                    del st.session_state['stack_frame']

    with pagination_cols[3]:
        if st.button(f"Next Page"):
            st.session_state.current_page += 1
            if 'player_frame' in st.session_state:
                del st.session_state['player_frame']
            if 'stack_frame' in st.session_state:
                del st.session_state['stack_frame']

    # Calculate start and end indices for current page
    start_idx = (st.session_state.current_page - 1) * rows_per_page
    end_idx = min((st.session_state.current_page) * rows_per_page, total_rows)
    st.dataframe(
        working_df.iloc[start_idx:end_idx].style
        .background_gradient(axis=0)
        .background_gradient(cmap='RdYlGn')
        .format(precision=2), 
        height=500,
        use_container_width=True,
        hide_index=True
    )

    with st.container():
        tab1, tab2, tab3 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info'])
        with tab1:

            if entry_parse_var == 'All':
                st.session_state['player_frame'] = create_player_exposures(working_df, player_columns)
                st.dataframe(st.session_state['player_frame'].
                    sort_values(by='Exposure Overall', ascending=False).
                    style.background_gradient(cmap='RdYlGn').
                    format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                    hide_index=True)
            else:
                st.session_state['player_frame'] = create_player_exposures(working_df, player_columns, entry_names)
                st.dataframe(st.session_state['player_frame'].
                    sort_values(by='Exposure Overall', ascending=False).
                    style.background_gradient(cmap='RdYlGn').
                    format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                    hide_index=True)
        with tab2:

            if entry_parse_var == 'All':
                st.session_state['stack_frame'] = create_stack_exposures(working_df)
                st.dataframe(st.session_state['stack_frame'].
                    sort_values(by='Exposure Overall', ascending=False).
                    style.background_gradient(cmap='RdYlGn').
                    format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                    hide_index=True)
            else:
                st.session_state['stack_frame'] = create_stack_exposures(working_df, entry_names)
                st.dataframe(st.session_state['stack_frame'].
                    sort_values(by='Exposure Overall', ascending=False).
                    style.background_gradient(cmap='RdYlGn').
                    format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                    hide_index=True)
        with tab3:
            
            if entry_parse_var == 'All':
                st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df)
                st.dataframe(st.session_state['stack_size_frame'].
                    sort_values(by='Exposure Overall', ascending=False).
                    style.background_gradient(cmap='RdYlGn').
                    format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                    hide_index=True)
            else:
                st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df, entry_names)
                st.dataframe(st.session_state['stack_size_frame'].
                    sort_values(by='Exposure Overall', ascending=False).
                    style.background_gradient(cmap='RdYlGn').
                    format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                    hide_index=True)