Spaces:
Running
Running
File size: 56,371 Bytes
45a439d b86285f 9594423 b86285f 26751b8 9594423 a0bee85 94c1a57 b86285f 5a713b7 25ce10e b86285f 25ce10e b86285f a0bee85 02caa74 a0bee85 25ce10e 02caa74 25ce10e 02caa74 b86285f 9594423 239be9c 2718b31 02caa74 2718b31 02caa74 2718b31 02caa74 0f3cb17 02caa74 2718b31 02caa74 5ce7b63 192168c 02caa74 053d8b5 02caa74 a0bee85 5cf9a04 6dad1e9 a0bee85 053d8b5 9012c48 6dad1e9 9012c48 a0bee85 4c34346 9594423 4c34346 9594423 38ab091 3932661 b86285f 33e229f 0f3cb17 33e229f 83b0a3d 3963b80 38ab091 39e0137 b86285f a0bee85 4c34346 9594423 4c34346 9594423 2718b31 b86285f 14f075f aa7c8a8 55c314c b86285f 14f075f aa7c8a8 19fe2eb b86285f 39e0137 76f06f3 39e0137 6bba819 39e0137 b86285f a0bee85 4c34346 f32fab3 4c34346 f32fab3 2718b31 b86285f 19fe2eb b86285f 9db2e5e b86285f 39e0137 b86285f a0bee85 4c34346 9594423 4c34346 9594423 2718b31 b86285f 19fe2eb b86285f 9db2e5e b86285f a0bee85 4c34346 9594423 4c34346 9594423 0f3cb17 6781ccf 0f3cb17 1ccb87a 0f3cb17 4dcd40c 0f3cb17 350c781 0f3cb17 a0bee85 0f3cb17 a0bee85 0f3cb17 a0bee85 4c34346 9594423 4c34346 9594423 2718b31 b86285f 4c34346 b86285f ecffc8d b86285f f175319 b86285f 9594423 b86285f 9594423 b86285f 9594423 b86285f 4c34346 b86285f a0bee85 b86285f a0bee85 b86285f a0bee85 4c34346 9594423 4c34346 9594423 2718b31 3963b80 e066741 3963b80 662b921 3963b80 e066741 3963b80 e066741 3963b80 b86285f 3963b80 b86285f 3963b80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 |
import streamlit as st
import numpy as np
from numpy import where as np_where
import pandas as pd
import gspread
import plotly.express as px
import scipy.stats as stats
from pymongo import MongoClient
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": st.secrets['model_sheets_connect_pk'],
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
credentials2 = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": st.secrets['sheets_api_connect_pk'],
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
NFL_Data = st.secrets['NFL_Data']
uri = st.secrets['mongo_uri']
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
dfs_db = client["NFL_Database"]
props_db = client["Props_DB"]
gc = gspread.service_account_from_dict(credentials)
gc2 = gspread.service_account_from_dict(credentials2)
return gc, gc2, NFL_Data, props_db, dfs_db
gcservice_account, gcservice_account2, NFL_Data, props_db, dfs_db = init_conn()
game_format = {'Win%': '{:.2%}', 'Vegas': '{:.2%}', 'Win% Diff': '{:.2%}'}
american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'}
def calculate_poisson(row):
mean_val = row['Mean_Outcome']
threshold = row['Prop']
cdf_value = stats.poisson.cdf(threshold, mean_val)
probability = 1 - cdf_value
return probability
@st.cache_resource(ttl=600)
def init_baselines():
collection = dfs_db["Game_Betting_Model"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
game_model = raw_display[['Team', 'Opp', 'Win%', 'Vegas', 'Win% Diff', 'Win Line', 'Vegas Line', 'Line Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']]
collection = dfs_db["Player_Stats"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
overall_stats = raw_display[['Player', 'Position', 'Team', 'Opp', 'rush_att', 'rec', 'dropbacks', 'rush_yards', 'rush_tds', 'rec_yards', 'rec_tds', 'pass_att', 'pass_yards', 'pass_tds', 'PPR', 'Half_PPR']]
collection = dfs_db["Prop_Trends"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
prop_trends = raw_display[['Player', 'over_prop', 'over_line', 'under_prop', 'under_line', 'book', 'prop_type', 'No Vig', 'Team', 'L3 Success', 'L6_Success', 'L10_success', 'L6 Avg', 'Projection',
'Proj Diff', 'Implied Over', 'Trending Over', 'Over Edge', 'Implied Under', 'Trending Under', 'Under Edge']]
collection = dfs_db["DK_NFL_ROO"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
load_display = raw_display[raw_display['Position'] != 'K']
timestamp = load_display['timestamp'][0]
collection = dfs_db["Prop_Trends"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
prop_frame = raw_display[['Player', 'over_prop', 'over_line', 'under_prop', 'under_line', 'book', 'prop_type', 'No Vig', 'Team', 'L3 Success', 'L6_Success', 'L10_success', 'L6 Avg', 'Projection',
'Proj Diff', 'Implied Over', 'Trending Over', 'Over Edge', 'Implied Under', 'Trending Under', 'Under Edge']]
collection = dfs_db['Pick6_Trends']
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
pick_frame = raw_display[['Player', 'over_prop', 'over_line', 'under_prop', 'under_line', 'book', 'prop_type', 'No Vig', 'Team', 'L3 Success', 'L6_Success', 'L10_success', 'L6 Avg', 'Projection',
'Proj Diff', 'Implied Over', 'Trending Over', 'Over Edge', 'Implied Under', 'Trending Under', 'Under Edge', 'last_name', 'P6_name', 'Full_name']]
collection = props_db["NFL_Props"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
market_props = raw_display[['Name', 'Position', 'Projection', 'PropType', 'OddsType', 'over_pay', 'under_pay']]
market_props['over_prop'] = market_props['Projection']
market_props['over_line'] = market_props['over_pay'].apply(lambda x: (x - 1) * 100 if x >= 2.0 else -100 / (x - 1))
market_props['under_prop'] = market_props['Projection']
market_props['under_line'] = market_props['under_pay'].apply(lambda x: (x - 1) * 100 if x >= 2.0 else -100 / (x - 1))
return game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props
def calculate_no_vig(row):
def implied_probability(american_odds):
if american_odds < 0:
return (-american_odds) / ((-american_odds) + 100)
else:
return 100 / (american_odds + 100)
over_line = row['over_line']
under_line = row['under_line']
over_prop = row['over_prop']
over_prob = implied_probability(over_line)
under_prob = implied_probability(under_line)
total_prob = over_prob + under_prob
no_vig_prob = (over_prob / total_prob + 0.5) * over_prop
return no_vig_prob
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
non_qb_stats = non_qb_stats.drop_duplicates(subset=['Player', 'Position'])
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
prop_table_options = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_PASSING_COMPLETIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
prop_format = {'L3 Success': '{:.2%}', 'L6_Success': '{:.2%}', 'L10_success': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
all_sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_PASSING_COMPLETIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
pick6_sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Completions', 'Rushing Yards', 'Receptions', 'Receiving Yards']
sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge'])
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(["Game Betting Model", 'Prop Market', "QB Projections", "RB/WR/TE Projections", "Player Prop Trends", "Player Prop Simulations", "Stat Specific Simulations"])
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
with tab1:
st.info(t_stamp)
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
non_qb_stats = non_qb_stats.drop_duplicates(subset=['Player', 'Position'])
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
team_frame = game_model
if line_var1 == 'Percentage':
team_frame = team_frame[['Team', 'Opp', 'Win%', 'Vegas', 'Win% Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']]
team_frame = team_frame.set_index('Team')
try:
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
except:
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
if line_var1 == 'American':
team_frame = team_frame[['Team', 'Opp', 'Win Line', 'Vegas Line', 'Line Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']]
team_frame = team_frame.set_index('Team')
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height = 1000, use_container_width = True)
st.download_button(
label="Export Team Model",
data=convert_df_to_csv(team_frame),
file_name='NFL_team_betting_export.csv',
mime='text/csv',
key='team_export',
)
with tab2:
st.info(t_stamp)
if st.button("Reset Data", key='reset4'):
st.cache_data.clear()
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
non_qb_stats = non_qb_stats.drop_duplicates(subset=['Player', 'Position'])
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
market_type = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options, key = 'market_type_key')
disp_market = market_props.copy()
disp_market = disp_market[disp_market['PropType'] == market_type]
disp_market['No_Vig_Prop'] = disp_market.apply(calculate_no_vig, axis=1)
fanduel_frame = disp_market[disp_market['OddsType'] == 'FANDUEL']
fanduel_dict = dict(zip(fanduel_frame['Name'], fanduel_frame['No_Vig_Prop']))
draftkings_frame = disp_market[disp_market['OddsType'] == 'DRAFTKINGS']
draftkings_dict = dict(zip(draftkings_frame['Name'], draftkings_frame['No_Vig_Prop']))
mgm_frame = disp_market[disp_market['OddsType'] == 'MGM']
mgm_dict = dict(zip(mgm_frame['Name'], mgm_frame['No_Vig_Prop']))
bet365_frame = disp_market[disp_market['OddsType'] == 'BET_365']
bet365_dict = dict(zip(bet365_frame['Name'], bet365_frame['No_Vig_Prop']))
disp_market['FANDUEL'] = disp_market['Name'].map(fanduel_dict)
disp_market['DRAFTKINGS'] = disp_market['Name'].map(draftkings_dict)
disp_market['MGM'] = disp_market['Name'].map(mgm_dict)
disp_market['BET365'] = disp_market['Name'].map(bet365_dict)
disp_market = disp_market[['Name', 'Position','FANDUEL', 'DRAFTKINGS', 'MGM', 'BET365']]
disp_market = disp_market.drop_duplicates(subset=['Name'], keep='first', ignore_index=True)
st.dataframe(disp_market.style.background_gradient(axis=1, subset=['FANDUEL', 'DRAFTKINGS', 'MGM', 'BET365'], cmap='RdYlGn').format(prop_format, precision=2), height = 1000, use_container_width = True)
st.download_button(
label="Export Market Props",
data=convert_df_to_csv(disp_market),
file_name='NFL_market_props_export.csv',
mime='text/csv',
)
with tab3:
st.info(t_stamp)
if st.button("Reset Data", key='reset2'):
st.cache_data.clear()
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
non_qb_stats = non_qb_stats.drop_duplicates(subset=['Player', 'Position'])
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
if split_var1 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = qb_stats['Team'].unique(), key='team_var1')
elif split_var1 == 'All':
team_var1 = qb_stats.Team.values.tolist()
qb_stats = qb_stats[qb_stats['Team'].isin(team_var1)]
qb_stats_disp = qb_stats.set_index('Player')
qb_stats_disp = qb_stats_disp.sort_values(by='PPR', ascending=False)
st.dataframe(qb_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height = 1000, use_container_width = True)
st.download_button(
label="Export Prop Model",
data=convert_df_to_csv(qb_stats_disp),
file_name='NFL_qb_stats_export.csv',
mime='text/csv',
key='NFL_qb_stats_export',
)
with tab4:
st.info(t_stamp)
if st.button("Reset Data", key='reset3'):
st.cache_data.clear()
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
non_qb_stats = non_qb_stats.drop_duplicates(subset=['Player', 'Position'])
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
if split_var2 == 'Specific Teams':
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = non_qb_stats['Team'].unique(), key='team_var2')
elif split_var2 == 'All':
team_var2 = non_qb_stats.Team.values.tolist()
non_qb_stats = non_qb_stats[non_qb_stats['Team'].isin(team_var2)]
non_qb_stats_disp = non_qb_stats.set_index('Player')
non_qb_stats_disp = non_qb_stats_disp.sort_values(by='PPR', ascending=False)
st.dataframe(non_qb_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height = 1000, use_container_width = True)
st.download_button(
label="Export Prop Model",
data=convert_df_to_csv(non_qb_stats_disp),
file_name='NFL_nonqb_stats_export.csv',
mime='text/csv',
key='NFL_nonqb_stats_export',
)
with tab5:
st.info(t_stamp)
if st.button("Reset Data", key='reset5'):
st.cache_data.clear()
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
non_qb_stats = non_qb_stats.drop_duplicates(subset=['Player', 'Position'])
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
if split_var5 == 'Specific Teams':
team_var5 = st.multiselect('Which teams would you like to include in the tables?', options = prop_trends['Team'].unique(), key='team_var5')
elif split_var5 == 'All':
team_var5 = prop_trends.Team.values.tolist()
prop_type_var2 = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options)
book_var2 = st.selectbox('Select type of book do you want to view?', options = ['FANDUEL', 'BET365', 'DRAFTKINGS', 'CONSENSUS'])
prop_frame_disp = prop_trends[prop_trends['Team'].isin(team_var5)]
prop_frame_disp = prop_frame_disp[prop_frame_disp['book'] == book_var2]
prop_frame_disp = prop_frame_disp[prop_frame_disp['prop_type'] == prop_type_var2]
#prop_frame_disp = prop_frame_disp.set_index('Player')
prop_frame_disp = prop_frame_disp.sort_values(by='Trending Over', ascending=False)
st.dataframe(prop_frame_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(prop_format, precision=2), height = 1000, use_container_width = True)
st.download_button(
label="Export Prop Trends Model",
data=convert_df_to_csv(prop_frame_disp),
file_name='NFL_prop_trends_export.csv',
mime='text/csv',
)
with tab6:
st.info(t_stamp)
if st.button("Reset Data", key='reset6'):
st.cache_data.clear()
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
non_qb_stats = non_qb_stats.drop_duplicates(subset=['Player', 'Position'])
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
with col1:
player_check = st.selectbox('Select player to simulate props', options = overall_stats['Player'].unique())
prop_type_var = st.selectbox('Select type of prop to simulate', options = ['Pass Yards', 'Pass TDs', 'Rush Yards', 'Rush TDs', 'Receptions', 'Rec Yards', 'Rec TDs', 'Fantasy', 'FD Fantasy', 'PrizePicks'])
ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
if prop_type_var == 'Pass Yards':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 100.0, max_value = 400.5, value = 250.5, step = .5)
elif prop_type_var == 'Pass TDs':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'Rush Yards':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 155.5, value = 25.5, step = .5)
elif prop_type_var == 'Rush TDs':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'Receptions':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 15.5, value = 5.5, step = .5)
elif prop_type_var == 'Rec Yards':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 155.5, value = 25.5, step = .5)
elif prop_type_var == 'Rec TDs':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'Fantasy':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
elif prop_type_var == 'FD Fantasy':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
elif prop_type_var == 'PrizePicks':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1000, max_value = 1000, value = -150, step = 1)
line_var = line_var + 1
if st.button('Simulate Prop'):
with col2:
with df_hold_container.container():
df = overall_stats
total_sims = 5000
df.replace("", 0, inplace=True)
player_var = df[df['Player'] == player_check]
player_var = player_var.reset_index()
if prop_type_var == 'Pass Yards':
df['Median'] = df['pass_yards']
elif prop_type_var == 'Pass TDs':
df['Median'] = df['pass_tds']
elif prop_type_var == 'Rush Yards':
df['Median'] = df['rush_yards']
elif prop_type_var == 'Rush TDs':
df['Median'] = df['rush_tds']
elif prop_type_var == 'Receptions':
df['Median'] = df['rec']
elif prop_type_var == 'Rec Yards':
df['Median'] = df['rec_yards']
elif prop_type_var == 'Rec TDs':
df['Median'] = df['rec_tds']
elif prop_type_var == 'Fantasy':
df['Median'] = df['PPR']
elif prop_type_var == 'FD Fantasy':
df['Median'] = df['Half_PPF']
elif prop_type_var == 'PrizePicks':
df['Median'] = df['Half_PPF']
flex_file = df
flex_file['Floor'] = flex_file['Median'] * .25
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
flex_file['STD'] = flex_file['Median'] / 4
flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['Prop'] = prop_var
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
if ou_var == 'Over':
players_only['beat_prop'] = np.where(players_only['Prop'] <= 3, players_only['poisson_var'], overall_file[overall_file > prop_var].count(axis=1)/float(total_sims))
elif ou_var == 'Under':
players_only['beat_prop'] = np.where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims)))
players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
final_outcomes = final_outcomes[final_outcomes['Player'] == player_check]
player_outcomes = player_outcomes[player_outcomes['Player'] == player_check]
player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
player_outcomes = player_outcomes.reset_index()
player_outcomes.columns = ['Instance', 'Outcome']
x1 = player_outcomes.Outcome.to_numpy()
print(x1)
hist_data = [x1]
group_labels = ['player outcomes']
fig = px.histogram(
player_outcomes, x='Outcome')
fig.add_vline(x=prop_var, line_dash="dash", line_color="green")
with df_hold_container:
df_hold_container = st.empty()
format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)
with info_hold_container:
st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')
with plot_hold_container:
st.dataframe(player_outcomes, use_container_width = True)
plot_hold_container = st.empty()
st.plotly_chart(fig, use_container_width=True)
with tab7:
st.info(t_stamp)
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
if st.button("Reset Data/Load Data", key='reset7'):
st.cache_data.clear()
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
non_qb_stats = non_qb_stats.drop_duplicates(subset=['Player', 'Position'])
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
settings_container = st.empty()
df_hold_container = st.empty()
export_container = st.empty()
with settings_container.container():
col1, col2, col3, col4 = st.columns([3, 3, 3, 3])
with col1:
game_select_var = st.selectbox('Select prop source', options = ['Aggregate', 'Pick6'])
with col2:
book_select_var = st.selectbox('Select book', options = ['ALL', 'BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'])
if book_select_var == 'ALL':
book_selections = ['BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
else:
book_selections = [book_select_var]
if game_select_var == 'Aggregate':
prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
elif game_select_var == 'Pick6':
prop_df = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
book_selections = ['Pick6']
with col3:
if game_select_var == 'Aggregate':
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS'])
elif game_select_var == 'Pick6':
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Rushing Attempts', 'Rushing Yards', 'Receptions', 'Receiving Yards', 'Receiving TDs'])
with col4:
st.download_button(
label="Download Prop Source",
data=convert_df_to_csv(prop_df),
file_name='NFL_prop_source.csv',
mime='text/csv',
key='prop_source',
)
if st.button('Simulate Prop Category'):
with df_hold_container.container():
if prop_type_var == 'All Props':
if game_select_var == 'Aggregate':
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
elif game_select_var == 'Pick6':
prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Rushing Attempts', 'Rushing Yards', 'Receptions', 'Receiving Yards', 'Receiving TDs']
player_df = overall_stats.copy()
for prop in sim_vars:
for books in book_selections:
prop_df = prop_df_raw[prop_df_raw['book'] == books]
prop_df = prop_df[prop_df['prop_type'] == prop]
prop_df = prop_df[~((prop_df['over_prop'] < 15) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
book_dict = dict(zip(prop_df.Player, prop_df.book))
over_dict = dict(zip(prop_df.Player, prop_df.Over))
under_dict = dict(zip(prop_df.Player, prop_df.Under))
trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))
player_df['book'] = player_df['Player'].map(book_dict)
player_df['Prop'] = player_df['Player'].map(prop_dict)
player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)
df = player_df.reset_index(drop=True)
team_dict = dict(zip(df.Player, df.Team))
total_sims = 1000
df.replace("", 0, inplace=True)
if prop == "NFL_GAME_PLAYER_PASSING_YARDS" or prop == "Passing Yards":
df['Median'] = df['pass_yards']
elif prop == "NFL_GAME_PLAYER_RUSHING_YARDS" or prop == "Rushing Yards":
df['Median'] = df['rush_yards']
elif prop == "NFL_GAME_PLAYER_PASSING_ATTEMPTS" or prop == "Passing Attempts":
df['Median'] = df['pass_att']
elif prop == "NFL_GAME_PLAYER_PASSING_TOUCHDOWNS" or prop == "Passing TDs":
df['Median'] = df['pass_tds']
elif prop == "NFL_GAME_PLAYER_RUSHING_ATTEMPTS" or prop == "Rushing Attempts":
df['Median'] = df['rush_att']
elif prop == "NFL_GAME_PLAYER_RECEIVING_RECEPTIONS" or prop == "Receptions":
df['Median'] = df['rec']
elif prop == "NFL_GAME_PLAYER_RECEIVING_YARDS" or prop == "Receiving Yards":
df['Median'] = df['rec_yards']
elif prop == "NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS" or prop == "Receiving TDs":
df['Median'] = df['rec_tds']
elif prop == "Rush + Rec Yards":
df['Median'] = df['rush_yards'] + df['rec_yards']
elif prop == "Rush + Rec TDs":
df['Median'] = df['rush_tds'] + df['rec_tds']
flex_file = df.copy()
flex_file['Floor'] = flex_file['Median'] * .25
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
flex_file['STD'] = flex_file['Median'] / 4
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file.copy()
overall_file = flex_file.copy()
prop_file = flex_file.copy()
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['Book'] = players_only['Player'].map(book_dict)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = players_only[["Over", "Imp Over", "Trending Over"]].mean(axis=1)
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = players_only[["Under", "Imp Under", "Trending Under"]].mean(axis=1)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Prop Type'] = prop
players_only['Player'] = hold_file[['Player']]
players_only['Team'] = players_only['Player'].map(team_dict)
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
final_outcomes = sim_all_hold
st.write(f'finished {prop} for {books}')
elif prop_type_var != 'All Props':
player_df = overall_stats.copy()
if game_select_var == 'Aggregate':
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
elif game_select_var == 'Pick6':
prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
for books in book_selections:
prop_df = prop_df_raw[prop_df_raw['book'] == books]
if prop_type_var == "NFL_GAME_PLAYER_PASSING_YARDS":
prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_YARDS']
elif prop_type_var == "Passing Yards":
prop_df = prop_df[prop_df['prop_type'] == 'Passing Yards']
elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_YARDS":
prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
elif prop_type_var == "Rushing Yards":
prop_df = prop_df[prop_df['prop_type'] == 'Rushing Yards']
elif prop_type_var == "NFL_GAME_PLAYER_PASSING_ATTEMPTS":
prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
elif prop_type_var == "Passing Attempts":
prop_df = prop_df[prop_df['prop_type'] == 'Passing Attempts']
elif prop_type_var == "NFL_GAME_PLAYER_PASSING_TOUCHDOWNS":
prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS']
elif prop_type_var == "Passing TDs":
prop_df = prop_df[prop_df['prop_type'] == 'Passing TDs']
elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_ATTEMPTS":
prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
elif prop_type_var == "Rushing Attempts":
prop_df = prop_df[prop_df['prop_type'] == 'Rushing Attempts']
elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_RECEPTIONS":
prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
elif prop_type_var == "Receptions":
prop_df = prop_df[prop_df['prop_type'] == 'Receptions']
elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_YARDS":
prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_YARDS']
elif prop_type_var == "Receiving Yards":
prop_df = prop_df[prop_df['prop_type'] == 'Receiving Yards']
elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS":
prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
elif prop_type_var == "Receiving TDs":
prop_df = prop_df[prop_df['prop_type'] == 'Receiving TDs']
elif prop_type_var == "Rush + Rec Yards":
prop_df = prop_df[prop_df['prop_type'] == 'Rush + Rec Yards']
elif prop_type_var == "Rush + Rec TDs":
prop_df = prop_df[prop_df['prop_type'] == 'Rush + Rec TDs']
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
prop_df = prop_df.rename(columns={"over_prop": "Prop"})
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
book_dict = dict(zip(prop_df.Player, prop_df.book))
over_dict = dict(zip(prop_df.Player, prop_df.Over))
under_dict = dict(zip(prop_df.Player, prop_df.Under))
trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))
player_df['book'] = player_df['Player'].map(book_dict)
player_df['Prop'] = player_df['Player'].map(prop_dict)
player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)
df = player_df.reset_index(drop=True)
team_dict = dict(zip(df.Player, df.Team))
total_sims = 1000
df.replace("", 0, inplace=True)
if prop_type_var == "NFL_GAME_PLAYER_PASSING_YARDS" or prop_type_var == "Passing Yards":
df['Median'] = df['pass_yards']
elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_YARDS" or prop_type_var == "Rushing Yards":
df['Median'] = df['rush_yards']
elif prop_type_var == "NFL_GAME_PLAYER_PASSING_ATTEMPTS" or prop_type_var == "Passing Attempts":
df['Median'] = df['pass_att']
elif prop_type_var == "NFL_GAME_PLAYER_PASSING_TOUCHDOWNS" or prop_type_var == "Passing TDs":
df['Median'] = df['pass_tds']
elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_ATTEMPTS" or prop_type_var == "Rushing Attempts":
df['Median'] = df['rush_att']
elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_RECEPTIONS" or prop_type_var == "Receptions":
df['Median'] = df['rec']
elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_YARDS" or prop_type_var == "Receiving Yards":
df['Median'] = df['rec_yards']
elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS" or prop_type_var == "Receiving TDs":
df['Median'] = df['rec_tds']
elif prop_type_var == "Rush + Rec Yards":
df['Median'] = df['rush_yards'] + df['rec_yards']
elif prop_type_var == "Rush + Rec TDs":
df['Median'] = df['rush_tds'] + df['rec_tds']
flex_file = df.copy()
flex_file['Floor'] = flex_file['Median'] * .25
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
flex_file['STD'] = flex_file['Median'] / 4
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file.copy()
overall_file = flex_file.copy()
prop_file = flex_file.copy()
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['Book'] = players_only['Player'].map(book_dict)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = players_only[["Over", "Imp Over", "Trending Over"]].mean(axis=1)
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = players_only[["Under", "Imp Under", "Trending Under"]].mean(axis=1)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Prop Type'] = prop_type_var
players_only['Player'] = hold_file[['Player']]
players_only['Team'] = players_only['Player'].map(team_dict)
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
final_outcomes = sim_all_hold
st.write(f'finished {prop_type_var} for {books}')
final_outcomes = final_outcomes.dropna()
if game_select_var == 'Pick6':
final_outcomes = final_outcomes.drop_duplicates(subset=['Player', 'Prop Type'])
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
with df_hold_container:
df_hold_container = st.empty()
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with export_container:
export_container = st.empty()
st.download_button(
label="Export Projections",
data=convert_df_to_csv(final_outcomes),
file_name='NFL_prop_proj.csv',
mime='text/csv',
key='prop_proj',
)
|