Spaces:
Running
Running
File size: 8,947 Bytes
975f9c6 5234a64 d373620 9f46cc7 5234a64 8254c9e 9ac49a2 5234a64 e790db4 5234a64 d373620 8254c9e d373620 9f46cc7 6ae35d6 8254c9e d373620 9ac49a2 d373620 0f29b7c 8254c9e 0f29b7c 9ac49a2 d373620 8254c9e 6ae35d6 c320b80 9f46cc7 6ae35d6 9f46cc7 3137c41 6ae35d6 3137c41 6ae35d6 9f46cc7 8254c9e 3137c41 a6294cd 9f46cc7 8254c9e 3137c41 8254c9e 3137c41 c320b80 9ac49a2 6ae35d6 5234a64 6ae35d6 9f46cc7 8254c9e a6294cd 373b0d2 8254c9e 9f46cc7 6ae35d6 8254c9e 9f46cc7 8254c9e 9f46cc7 8254c9e 9f46cc7 9ac49a2 5234a64 9ac49a2 9f46cc7 9ac49a2 9f46cc7 e790db4 9ac49a2 9f46cc7 e790db4 9f46cc7 753fcb8 9ac49a2 6ae35d6 373b0d2 6ae35d6 e790db4 9f46cc7 6ae35d6 9ac49a2 6ae35d6 975f9c6 9ac49a2 8254c9e 9ac49a2 c320b80 3137c41 9ac49a2 e790db4 3137c41 b613b80 e790db4 9ac49a2 9f46cc7 6ae35d6 9ac49a2 6ae35d6 e790db4 6ae35d6 9ac49a2 6ae35d6 9ac49a2 6ae35d6 9f46cc7 6ae35d6 e790db4 6ae35d6 b613b80 6ae35d6 b613b80 8254c9e b613b80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
from PIL import Image
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize TrOCR with error handling
try:
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-small-printed")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-small-printed")
logging.info("TrOCR model and processor loaded successfully")
except Exception as e:
logging.error(f"Failed to load TrOCR model: {str(e)}")
processor = None
model = None
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Save image to debug directory with timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if isinstance(img, Image.Image):
img.save(filename)
elif len(img.shape) == 3:
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
else:
cv2.imwrite(filename, img)
logging.info(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return np.mean(gray)
def preprocess_image(img):
"""Preprocess image for OCR with enhanced contrast and noise reduction."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Dynamic contrast adjustment based on brightness
brightness = estimate_brightness(img)
clahe_clip = 4.0 if brightness < 100 else 2.0
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8))
enhanced = clahe.apply(gray)
save_debug_image(enhanced, "01_preprocess_clahe")
# Gaussian blur to reduce noise
blurred = cv2.GaussianBlur(enhanced, (3, 3), 0)
save_debug_image(blurred, "02_preprocess_blur")
# Adaptive thresholding for digit segmentation
block_size = max(11, min(31, int(img.shape[0] / 20) * 2 + 1))
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 2)
# Morphological operations to clean up digits
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=1)
save_debug_image(thresh, "03_preprocess_morph")
return thresh, enhanced
def correct_rotation(img):
"""Correct image rotation using edge detection."""
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)
if lines is not None:
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
angle = np.median(angles)
if abs(angle) > 1.0:
h, w = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
img = cv2.warpAffine(img, M, (w, h))
save_debug_image(img, "00_rotated_image")
logging.info(f"Applied rotation: {angle:.2f} degrees")
return img
except Exception as e:
logging.error(f"Rotation correction failed: {str(e)}")
return img
def detect_roi(img):
"""Detect region of interest (display) with refined contour filtering."""
try:
save_debug_image(img, "04_original")
thresh, enhanced = preprocess_image(img)
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
img_area = img.shape[0] * img.shape[1]
valid_contours = []
for c in contours:
area = cv2.contourArea(c)
x, y, w, h = cv2.boundingRect(c)
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
aspect_ratio = w / h
# Relaxed constraints for digital displays
if (200 < area < (img_area * 0.8) and
0.5 <= aspect_ratio <= 15.0 and w > 50 and h > 20 and roi_brightness > 30):
valid_contours.append((c, area * roi_brightness))
logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
if valid_contours:
contour, _ = max(valid_contours, key=lambda x: x[1])
x, y, w, h = cv2.boundingRect(contour)
padding = max(15, min(50, int(min(w, h) * 0.3)))
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "05_detected_roi")
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No ROI found, using full image.")
save_debug_image(img, "05_no_roi_fallback")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
save_debug_image(img, "05_roi_error_fallback")
return img, None
def perform_ocr(img):
"""Perform OCR using TrOCR for digital displays."""
if processor is None or model is None:
logging.error("TrOCR model not loaded, cannot perform OCR.")
return None, 0.0
try:
# Convert to PIL for TrOCR
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
save_debug_image(pil_img, "06_ocr_input")
# Process image with TrOCR
pixel_values = processor(pil_img, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values, max_length=10)
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
logging.info(f"TrOCR raw output: {text}")
# Clean and validate text
text = re.sub(r"[^\d\.]", "", text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if text and re.fullmatch(r"^\d*\.?\d*$", text):
text = text.lstrip('0') or '0'
confidence = 95.0 if len(text.replace('.', '')) >= 2 else 85.0
logging.info(f"Validated text: {text}, Confidence: {confidence:.2f}%")
return text, confidence
logging.info(f"Text '{text}' failed validation.")
return None, 0.0
except Exception as e:
logging.error(f"OCR failed: {str(e)}")
return None, 0.0
def extract_weight_from_image(pil_img):
"""Extract weight from a digital scale image."""
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_input_image")
img = correct_rotation(img)
brightness = estimate_brightness(img)
conf_threshold = 0.7 if brightness > 100 else 0.5
roi_img, roi_bbox = detect_roi(img)
if roi_bbox:
conf_threshold *= 1.1 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.3) else 1.0
result, confidence = perform_ocr(roi_img)
if result and confidence >= conf_threshold * 100:
try:
weight = float(result)
if 0.01 <= weight <= 1000: # Narrowed range for typical scale weights
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
return result, confidence
logging.warning(f"Weight {result} out of range.")
except ValueError:
logging.warning(f"Invalid weight format: {result}")
logging.info("Primary OCR failed, using full image fallback.")
result, confidence = perform_ocr(img)
if result and confidence >= conf_threshold * 0.9 * 100:
try:
weight = float(result)
if 0.01 <= weight <= 1000:
logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%")
return result, confidence
logging.warning(f"Full image weight {result} out of range.")
except ValueError:
logging.warning(f"Invalid full image weight format: {result}")
logging.info("No valid weight detected.")
return "Not detected", 0.0
except Exception as e:
logging.error(f"Weight extraction failed: {str(e)}")
return "Not detected", 0.0 |