File size: 17,458 Bytes
975f9c6
 
 
 
5234a64
d373620
 
5234a64
8254c9e
9ac49a2
5234a64
9ac49a2
5234a64
 
d373620
 
 
 
 
8254c9e
d373620
 
8254c9e
d373620
8254c9e
d373620
9ac49a2
d373620
0f29b7c
8254c9e
0f29b7c
9ac49a2
d373620
8254c9e
 
c320b80
8254c9e
 
 
 
 
 
3137c41
 
8254c9e
3137c41
a6294cd
8254c9e
3137c41
 
a6294cd
554a2ee
8254c9e
3137c41
 
 
 
8254c9e
3137c41
 
 
 
c320b80
9ac49a2
8254c9e
5234a64
8254c9e
 
 
 
a6294cd
8254c9e
 
a6294cd
373b0d2
8254c9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac49a2
5234a64
9ac49a2
8254c9e
9ac49a2
 
373b0d2
8254c9e
9ac49a2
8254c9e
4c95d04
fcdea18
9ac49a2
a6294cd
 
554a2ee
a6294cd
 
 
 
9ac49a2
5234a64
9ac49a2
 
 
 
 
 
 
 
 
 
8254c9e
975f9c6
9ac49a2
 
 
 
 
 
 
 
 
 
 
 
4c95d04
9ac49a2
 
 
 
 
8254c9e
 
c320b80
 
 
9ac49a2
 
8254c9e
9ac49a2
d373620
9ac49a2
8254c9e
9ac49a2
8254c9e
9ac49a2
8254c9e
 
d373620
8254c9e
 
 
753fcb8
8254c9e
9ac49a2
8254c9e
9ac49a2
753fcb8
9ac49a2
 
 
 
8254c9e
9ac49a2
 
 
753fcb8
9ac49a2
 
 
 
 
 
 
 
8254c9e
 
9ac49a2
 
373b0d2
c320b80
753fcb8
8254c9e
9ac49a2
753fcb8
9ac49a2
373b0d2
 
 
9ac49a2
373b0d2
8254c9e
9ac49a2
 
8254c9e
9ac49a2
975f9c6
9ac49a2
8254c9e
9ac49a2
 
 
c320b80
3137c41
9ac49a2
8254c9e
3137c41
b613b80
 
8254c9e
9ac49a2
 
554a2ee
9ac49a2
c320b80
8254c9e
 
 
 
9ac49a2
8254c9e
9ac49a2
8254c9e
 
3137c41
8254c9e
 
9ac49a2
8254c9e
 
 
 
554a2ee
8254c9e
 
a6294cd
8254c9e
 
 
 
554a2ee
8254c9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554a2ee
8254c9e
 
554a2ee
8254c9e
 
 
 
554a2ee
 
 
3137c41
554a2ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8254c9e
554a2ee
8254c9e
 
554a2ee
8254c9e
554a2ee
8254c9e
554a2ee
 
8254c9e
b613b80
 
554a2ee
b613b80
 
 
 
 
 
 
 
 
 
8254c9e
 
554a2ee
8254c9e
b613b80
 
 
8254c9e
b613b80
 
8254c9e
b613b80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Initialize EasyOCR
easyocr_reader = easyocr.Reader(['en'], gpu=False)

# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)

def save_debug_image(img, filename_suffix, prefix=""):
    """Save image to debug directory with timestamp."""
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
    if len(img.shape) == 3:
        cv2.imwrite(filename, img)
    else:
        cv2.imwrite(filename, img)
    logging.info(f"Saved debug image: {filename}")

def estimate_brightness(img):
    """Estimate image brightness."""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return np.mean(gray)

def preprocess_image(img):
    """Preprocess image for OCR."""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    denoised = cv2.bilateralFilter(gray, 5, 8, 8)
    save_debug_image(denoised, "01_preprocess_bilateral")
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
    enhanced = clahe.apply(denoised)
    save_debug_image(enhanced, "02_preprocess_clahe")
    return enhanced

def correct_rotation(img):
    """Correct image rotation."""
    try:
        edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 50, 150)
        lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)
        if lines is not None:
            angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
            angle = np.median(angles)
            if abs(angle) > 2:
                h, w = img.shape[:2]
                center = (w // 2, h // 2)
                M = cv2.getRotationMatrix2D(center, angle, 1.0)
                img = cv2.warpAffine(img, M, (w, h))
                save_debug_image(img, "00_rotated_image")
                logging.info(f"Applied rotation: {angle:.2f} degrees")
        return img
    except Exception as e:
        logging.error(f"Rotation correction failed: {str(e)}")
        return img

def detect_roi(img):
    """Detect region of interest (display)."""
    try:
        save_debug_image(img, "03_original")
        preprocessed = preprocess_image(img)
        brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        block_size = max(9, min(31, int(img.shape[0] / 25) * 2 + 1))
        thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                       cv2.THRESH_BINARY_INV, block_size, 2)
        save_debug_image(thresh, "04_roi_threshold")
        contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        
        if contours:
            img_area = img.shape[0] * img.shape[1]
            valid_contours = []
            for c in contours:
                area = cv2.contourArea(c)
                x, y, w, h = cv2.boundingRect(c)
                roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
                aspect_ratio = w / h
                if (50 < area < (img_area * 0.95) and 
                    0.2 <= aspect_ratio <= 30.0 and w > 30 and h > 10 and roi_brightness > 30):
                    valid_contours.append((c, roi_brightness))
                    logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
            
            if valid_contours:
                contour, _ = max(valid_contours, key=lambda x: x[1])
                x, y, w, h = cv2.boundingRect(contour)
                padding = 200
                x, y = max(0, x - padding), max(0, y - padding)
                w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
                roi_img = img[y:y+h, x:x+w]
                save_debug_image(roi_img, "05_detected_roi")
                logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
                return roi_img, (x, y, w, h)
        
        logging.info("No ROI found, using full image.")
        save_debug_image(img, "05_no_roi_fallback")
        return img, None
    except Exception as e:
        logging.error(f"ROI detection failed: {str(e)}")
        save_debug_image(img, "05_roi_error_fallback")
        return img, None

def detect_segments(digit_img, brightness):
    """Detect seven-segment digits."""
    h, w = digit_img.shape
    if h < 5 or w < 3:
        return None

    segments = {
        'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)),
        'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)),
        'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h),
        'left_top': (0, int(w*0.3), int(h*0.1), int(h*0.5)),
        'left_bottom': (0, int(w*0.3), int(h*0.5), int(h*0.9)),
        'right_top': (int(w*0.7), w, int(h*0.1), int(h*0.5)),
        'right_bottom': (int(w*0.7), w, int(h*0.5), int(h*0.9))
    }

    segment_presence = {}
    for name, (x1, x2, y1, y2) in segments.items():
        x1, y1 = max(0, x1), max(0, y1)
        x2, y2 = min(w, x2), min(h, y2)
        region = digit_img[y1:y2, x1:x2]
        if region.size == 0:
            segment_presence[name] = False
            continue
        pixel_count = np.sum(region == 255)
        total_pixels = region.size
        segment_presence[name] = pixel_count / total_pixels > (0.1 if brightness < 80 else 0.25)

    digit_patterns = {
        '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
        '1': ('right_top', 'right_bottom'),
        '2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
        '3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
        '4': ('middle', 'left_top', 'right_top', 'right_bottom'),
        '5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
        '6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
        '7': ('top', 'right_top', 'right_bottom'),
        '8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
        '9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
    }

    best_match = None
    max_score = -1
    for digit, pattern in digit_patterns.items():
        matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
        non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
        score = matches - 0.1 * non_matches_penalty
        if matches >= len(pattern) * 0.55:
            score += 1.0
        if score > max_score:
            max_score = score
            best_match = digit
    
    logging.debug(f"Segment presence: {segment_presence}, Digit: {best_match}")
    return best_match

def custom_seven_segment_ocr(img, roi_bbox):
    """Perform OCR for seven-segment displays."""
    try:
        preprocessed = preprocess_image(img)
        brightness = estimate_brightness(img)
        _, thresh = cv2.threshold(preprocessed, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
        save_debug_image(thresh, "06_roi_thresh_digits")
        results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, 
                                          contrast_ths=0.05, adjust_contrast=1.2, 
                                          text_threshold=0.15, mag_ratio=4.0, 
                                          allowlist='0123456789.', batch_size=2, y_ths=0.3)
        
        logging.info(f"EasyOCR results: {results}")
        if not results:
            logging.info("No digits found.")
            return None

        digits_info = []
        for (bbox, text, conf) in results:
            (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
            h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
            if (text.isdigit() or text == '.') and h_bbox > 4:
                x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
                y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
                digits_info.append((x_min, x_max, y_min, y_max, text, conf))

        digits_info.sort(key=lambda x: x[0])
        recognized_text = ""
        for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info):
            x_min, y_min = max(0, x_min), max(0, y_min)
            x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
            if x_max <= x_min or y_max <= y_min:
                continue
            digit_img_crop = thresh[y_min:y_max, x_min:x_max]
            save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}")
            if easyocr_conf > 0.8 or easyocr_char == '.':
                recognized_text += easyocr_char
            else:
                digit_from_segments = detect_segments(digit_img_crop, brightness)
                recognized_text += digit_from_segments if digit_from_segments else easyocr_char
        
        logging.info(f"Recognized text: {recognized_text}")
        text = re.sub(r"[^\d\.]", "", recognized_text)
        if text.count('.') > 1:
            text = text.replace('.', '', text.count('.') - 1)
        if text and re.fullmatch(r"^\d*\.?\d*$", text):
            text = text.strip('.')
            if text == '':
                return None
            return text.lstrip('0') or '0'
        logging.info(f"Text '{recognized_text}' failed validation.")
        return None
    except Exception as e:
        logging.error(f"Seven-segment OCR failed: {str(e)}")
        return None

def extract_weight_from_image(pil_img):
    """Extract weight from a digital scale image."""
    try:
        img = np.array(pil_img)
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        save_debug_image(img, "00_input_image")
        img = correct_rotation(img)
        brightness = estimate_brightness(img)
        conf_threshold = 0.6 if brightness > 150 else (0.4 if brightness > 80 else 0.2)

        roi_img, roi_bbox = detect_roi(img)
        if roi_bbox:
            conf_threshold *= 1.05 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.5) else 1.0

        custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
        if custom_result and custom_result != '0':
            try:
                weight = float(custom_result)
                if 0.00001 <= weight <= 10000:
                    logging.info(f"Custom OCR: {custom_result}, Confidence: 90.0%")
                    return custom_result, 90.0
                logging.warning(f"Custom OCR {custom_result} out of range.")
            except ValueError:
                logging.warning(f"Custom OCR '{custom_result}' invalid number.")

        logging.info("Custom OCR failed, using EasyOCR fallback.")
        preprocessed_roi = preprocess_image(roi_img)
        final_roi = cv2.adaptiveThreshold(preprocessed_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                          cv2.THRESH_BINARY_INV, max(9, min(31, int(roi_img.shape[0] / 25) * 2 + 1)), 2)
        save_debug_image(final_roi, "08_fallback_thresh")

        results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False, 
                                          contrast_ths=0.05, adjust_contrast=1.2, 
                                          text_threshold=0.15, mag_ratio=4.0, 
                                          allowlist='0123456789. kglb', batch_size=2, y_ths=0.3)

        if not results:
            logging.info("First EasyOCR pass failed, trying fallback.")
            results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False, 
                                              contrast_ths=0.02, adjust_contrast=1.5, 
                                              text_threshold=0.1, mag_ratio=5.0, 
                                              allowlist='0123456789. kglb', batch_size=2, y_ths=0.3)
            save_debug_image(final_roi, "08_fallback_thresh_fallback")

        logging.info(f"EasyOCR results: {results}")
        candidates = []
        unit = None
        for (bbox, text, conf) in results:
            if 'kg' in text.lower():
                unit = 'kg'
                continue
            elif 'g' in text.lower():
                unit = 'g'
                continue
            elif 'lb' in text.lower():
                unit = 'lb'
                continue
            text = re.sub(r"[^\d\.]", "", text)
            if text.count('.') > 1:
                text = text.replace('.', '', text.count('.') - 1)
            text = text.strip('.')
            if re.fullmatch(r"^\d*\.?\d*$", text):
                try:
                    weight = float(text)
                    if unit == 'g':
                        weight /= 1000
                    elif unit == 'lb':
                        weight *= 0.453592
                    range_score = 1.5 if 0.00001 <= weight <= 10000 else 0.5
                    digit_count = len(text.replace('.', ''))
                    digit_score = 1.4 if 1 <= digit_count <= 8 else 0.6
                    score = conf * range_score * digit_score
                    if roi_bbox:
                        x_roi, y_roi, w_roi, h_roi = roi_bbox
                        roi_area = w_roi * h_roi
                        x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
                        x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
                        bbox_area = (x_max - x_min) * (y_max - y_min)
                        if roi_area > 0 and bbox_area / roi_area < 0.02:
                            score *= 0.4
                    candidates.append((text, conf, score, unit))
                    logging.info(f"Candidate: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
                except ValueError:
                    logging.warning(f"Could not convert '{text}' to float.")

        if not candidates and not roi_bbox:
            logging.info("No candidates, trying full image.")
            preprocessed_full = preprocess_image(img)
            final_full = cv2.adaptiveThreshold(preprocessed_full, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                               cv2.THRESH_BINARY_INV, max(9, min(31, int(img.shape[0] / 25) * 2 + 1)), 2)
            save_debug_image(final_full, "08_fallback_full")
            results = easyocr_reader.readtext(final_full, detail=1, paragraph=False, 
                                              contrast_ths=0.05, adjust_contrast=1.5, 
                                              text_threshold=0.15, mag_ratio=4.0, 
                                              allowlist='0123456789. kglb', batch_size=2, y_ths=0.3)
            logging.info(f"Full image EasyOCR: {results}")
            for (bbox, text, conf) in results:
                if 'kg' in text.lower():
                    unit = 'kg'
                    continue
                elif 'g' in text.lower():
                    unit = 'g'
                    continue
                elif 'lb' in text.lower():
                    unit = 'lb'
                    continue
                text = re.sub(r"[^\d\.]", "", text)
                if text.count('.') > 1:
                    text = text.replace('.', '', text.count('.') - 1)
                text = text.strip('.')
                if re.fullmatch(r"^\d*\.?\d*$", text):
                    try:
                        weight = float(text)
                        if unit == 'g':
                            weight /= 1000
                        elif unit == 'lb':
                            weight *= 0.453592
                        range_score = 1.2 if 0.00001 <= weight <= 10000 else 0.4
                        digit_count = len(text.replace('.', ''))
                        digit_score = 1.2 if 1 <= digit_count <= 8 else 0.5
                        score = conf * range_score * digit_score * 0.7
                        candidates.append((text, conf, score, unit))
                        logging.info(f"Full image candidate: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
                    except ValueError:
                        logging.warning(f"Could not convert '{text}' to float (full image).")

        if not candidates:
            logging.info("No valid weight detected.")
            return "Not detected", 0.0

        best_weight, best_conf, best_score, best_unit = max(candidates, key=lambda x: x[2])
        if "." in best_weight:
            int_part, dec_part = best_weight.split(".")
            int_part = int_part.lstrip("0") or "0"
            dec_part = dec_part.rstrip('0')
            best_weight = f"{int_part}.{dec_part}" if dec_part else int_part
        else:
            best_weight = best_weight.lstrip('0') or "0"

        try:
            final_weight = float(best_weight)
            if final_weight < 0.00001 or final_weight > 10000:
                best_conf *= 0.4
            elif final_weight == 0 and best_conf < 0.95:
                best_conf *= 0.5
        except ValueError:
            pass

        logging.info(f"Final weight: {best_weight} kg, Confidence: {round(best_conf * 100, 2)}%, Unit: {best_unit or 'none'}")
        return best_weight, round(best_conf * 100, 2)
    except Exception as e:
        logging.error(f"Weight extraction failed: {str(e)}")
        return "Not detected", 0.0