Spaces:
Running
Running
File size: 17,458 Bytes
975f9c6 5234a64 d373620 5234a64 8254c9e 9ac49a2 5234a64 9ac49a2 5234a64 d373620 8254c9e d373620 8254c9e d373620 8254c9e d373620 9ac49a2 d373620 0f29b7c 8254c9e 0f29b7c 9ac49a2 d373620 8254c9e c320b80 8254c9e 3137c41 8254c9e 3137c41 a6294cd 8254c9e 3137c41 a6294cd 554a2ee 8254c9e 3137c41 8254c9e 3137c41 c320b80 9ac49a2 8254c9e 5234a64 8254c9e a6294cd 8254c9e a6294cd 373b0d2 8254c9e 9ac49a2 5234a64 9ac49a2 8254c9e 9ac49a2 373b0d2 8254c9e 9ac49a2 8254c9e 4c95d04 fcdea18 9ac49a2 a6294cd 554a2ee a6294cd 9ac49a2 5234a64 9ac49a2 8254c9e 975f9c6 9ac49a2 4c95d04 9ac49a2 8254c9e c320b80 9ac49a2 8254c9e 9ac49a2 d373620 9ac49a2 8254c9e 9ac49a2 8254c9e 9ac49a2 8254c9e d373620 8254c9e 753fcb8 8254c9e 9ac49a2 8254c9e 9ac49a2 753fcb8 9ac49a2 8254c9e 9ac49a2 753fcb8 9ac49a2 8254c9e 9ac49a2 373b0d2 c320b80 753fcb8 8254c9e 9ac49a2 753fcb8 9ac49a2 373b0d2 9ac49a2 373b0d2 8254c9e 9ac49a2 8254c9e 9ac49a2 975f9c6 9ac49a2 8254c9e 9ac49a2 c320b80 3137c41 9ac49a2 8254c9e 3137c41 b613b80 8254c9e 9ac49a2 554a2ee 9ac49a2 c320b80 8254c9e 9ac49a2 8254c9e 9ac49a2 8254c9e 3137c41 8254c9e 9ac49a2 8254c9e 554a2ee 8254c9e a6294cd 8254c9e 554a2ee 8254c9e 554a2ee 8254c9e 554a2ee 8254c9e 554a2ee 3137c41 554a2ee 8254c9e 554a2ee 8254c9e 554a2ee 8254c9e 554a2ee 8254c9e 554a2ee 8254c9e b613b80 554a2ee b613b80 8254c9e 554a2ee 8254c9e b613b80 8254c9e b613b80 8254c9e b613b80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize EasyOCR
easyocr_reader = easyocr.Reader(['en'], gpu=False)
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Save image to debug directory with timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if len(img.shape) == 3:
cv2.imwrite(filename, img)
else:
cv2.imwrite(filename, img)
logging.info(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return np.mean(gray)
def preprocess_image(img):
"""Preprocess image for OCR."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
denoised = cv2.bilateralFilter(gray, 5, 8, 8)
save_debug_image(denoised, "01_preprocess_bilateral")
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
enhanced = clahe.apply(denoised)
save_debug_image(enhanced, "02_preprocess_clahe")
return enhanced
def correct_rotation(img):
"""Correct image rotation."""
try:
edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 50, 150)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)
if lines is not None:
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
angle = np.median(angles)
if abs(angle) > 2:
h, w = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
img = cv2.warpAffine(img, M, (w, h))
save_debug_image(img, "00_rotated_image")
logging.info(f"Applied rotation: {angle:.2f} degrees")
return img
except Exception as e:
logging.error(f"Rotation correction failed: {str(e)}")
return img
def detect_roi(img):
"""Detect region of interest (display)."""
try:
save_debug_image(img, "03_original")
preprocessed = preprocess_image(img)
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
block_size = max(9, min(31, int(img.shape[0] / 25) * 2 + 1))
thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 2)
save_debug_image(thresh, "04_roi_threshold")
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
img_area = img.shape[0] * img.shape[1]
valid_contours = []
for c in contours:
area = cv2.contourArea(c)
x, y, w, h = cv2.boundingRect(c)
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
aspect_ratio = w / h
if (50 < area < (img_area * 0.95) and
0.2 <= aspect_ratio <= 30.0 and w > 30 and h > 10 and roi_brightness > 30):
valid_contours.append((c, roi_brightness))
logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
if valid_contours:
contour, _ = max(valid_contours, key=lambda x: x[1])
x, y, w, h = cv2.boundingRect(contour)
padding = 200
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "05_detected_roi")
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No ROI found, using full image.")
save_debug_image(img, "05_no_roi_fallback")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
save_debug_image(img, "05_roi_error_fallback")
return img, None
def detect_segments(digit_img, brightness):
"""Detect seven-segment digits."""
h, w = digit_img.shape
if h < 5 or w < 3:
return None
segments = {
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)),
'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)),
'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h),
'left_top': (0, int(w*0.3), int(h*0.1), int(h*0.5)),
'left_bottom': (0, int(w*0.3), int(h*0.5), int(h*0.9)),
'right_top': (int(w*0.7), w, int(h*0.1), int(h*0.5)),
'right_bottom': (int(w*0.7), w, int(h*0.5), int(h*0.9))
}
segment_presence = {}
for name, (x1, x2, y1, y2) in segments.items():
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(w, x2), min(h, y2)
region = digit_img[y1:y2, x1:x2]
if region.size == 0:
segment_presence[name] = False
continue
pixel_count = np.sum(region == 255)
total_pixels = region.size
segment_presence[name] = pixel_count / total_pixels > (0.1 if brightness < 80 else 0.25)
digit_patterns = {
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'1': ('right_top', 'right_bottom'),
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
'4': ('middle', 'left_top', 'right_top', 'right_bottom'),
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
'7': ('top', 'right_top', 'right_bottom'),
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
}
best_match = None
max_score = -1
for digit, pattern in digit_patterns.items():
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
score = matches - 0.1 * non_matches_penalty
if matches >= len(pattern) * 0.55:
score += 1.0
if score > max_score:
max_score = score
best_match = digit
logging.debug(f"Segment presence: {segment_presence}, Digit: {best_match}")
return best_match
def custom_seven_segment_ocr(img, roi_bbox):
"""Perform OCR for seven-segment displays."""
try:
preprocessed = preprocess_image(img)
brightness = estimate_brightness(img)
_, thresh = cv2.threshold(preprocessed, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
save_debug_image(thresh, "06_roi_thresh_digits")
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.05, adjust_contrast=1.2,
text_threshold=0.15, mag_ratio=4.0,
allowlist='0123456789.', batch_size=2, y_ths=0.3)
logging.info(f"EasyOCR results: {results}")
if not results:
logging.info("No digits found.")
return None
digits_info = []
for (bbox, text, conf) in results:
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
if (text.isdigit() or text == '.') and h_bbox > 4:
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info):
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
if x_max <= x_min or y_max <= y_min:
continue
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}")
if easyocr_conf > 0.8 or easyocr_char == '.':
recognized_text += easyocr_char
else:
digit_from_segments = detect_segments(digit_img_crop, brightness)
recognized_text += digit_from_segments if digit_from_segments else easyocr_char
logging.info(f"Recognized text: {recognized_text}")
text = re.sub(r"[^\d\.]", "", recognized_text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
if text and re.fullmatch(r"^\d*\.?\d*$", text):
text = text.strip('.')
if text == '':
return None
return text.lstrip('0') or '0'
logging.info(f"Text '{recognized_text}' failed validation.")
return None
except Exception as e:
logging.error(f"Seven-segment OCR failed: {str(e)}")
return None
def extract_weight_from_image(pil_img):
"""Extract weight from a digital scale image."""
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_input_image")
img = correct_rotation(img)
brightness = estimate_brightness(img)
conf_threshold = 0.6 if brightness > 150 else (0.4 if brightness > 80 else 0.2)
roi_img, roi_bbox = detect_roi(img)
if roi_bbox:
conf_threshold *= 1.05 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.5) else 1.0
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
if custom_result and custom_result != '0':
try:
weight = float(custom_result)
if 0.00001 <= weight <= 10000:
logging.info(f"Custom OCR: {custom_result}, Confidence: 90.0%")
return custom_result, 90.0
logging.warning(f"Custom OCR {custom_result} out of range.")
except ValueError:
logging.warning(f"Custom OCR '{custom_result}' invalid number.")
logging.info("Custom OCR failed, using EasyOCR fallback.")
preprocessed_roi = preprocess_image(roi_img)
final_roi = cv2.adaptiveThreshold(preprocessed_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, max(9, min(31, int(roi_img.shape[0] / 25) * 2 + 1)), 2)
save_debug_image(final_roi, "08_fallback_thresh")
results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
contrast_ths=0.05, adjust_contrast=1.2,
text_threshold=0.15, mag_ratio=4.0,
allowlist='0123456789. kglb', batch_size=2, y_ths=0.3)
if not results:
logging.info("First EasyOCR pass failed, trying fallback.")
results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
contrast_ths=0.02, adjust_contrast=1.5,
text_threshold=0.1, mag_ratio=5.0,
allowlist='0123456789. kglb', batch_size=2, y_ths=0.3)
save_debug_image(final_roi, "08_fallback_thresh_fallback")
logging.info(f"EasyOCR results: {results}")
candidates = []
unit = None
for (bbox, text, conf) in results:
if 'kg' in text.lower():
unit = 'kg'
continue
elif 'g' in text.lower():
unit = 'g'
continue
elif 'lb' in text.lower():
unit = 'lb'
continue
text = re.sub(r"[^\d\.]", "", text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if re.fullmatch(r"^\d*\.?\d*$", text):
try:
weight = float(text)
if unit == 'g':
weight /= 1000
elif unit == 'lb':
weight *= 0.453592
range_score = 1.5 if 0.00001 <= weight <= 10000 else 0.5
digit_count = len(text.replace('.', ''))
digit_score = 1.4 if 1 <= digit_count <= 8 else 0.6
score = conf * range_score * digit_score
if roi_bbox:
x_roi, y_roi, w_roi, h_roi = roi_bbox
roi_area = w_roi * h_roi
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
bbox_area = (x_max - x_min) * (y_max - y_min)
if roi_area > 0 and bbox_area / roi_area < 0.02:
score *= 0.4
candidates.append((text, conf, score, unit))
logging.info(f"Candidate: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
except ValueError:
logging.warning(f"Could not convert '{text}' to float.")
if not candidates and not roi_bbox:
logging.info("No candidates, trying full image.")
preprocessed_full = preprocess_image(img)
final_full = cv2.adaptiveThreshold(preprocessed_full, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, max(9, min(31, int(img.shape[0] / 25) * 2 + 1)), 2)
save_debug_image(final_full, "08_fallback_full")
results = easyocr_reader.readtext(final_full, detail=1, paragraph=False,
contrast_ths=0.05, adjust_contrast=1.5,
text_threshold=0.15, mag_ratio=4.0,
allowlist='0123456789. kglb', batch_size=2, y_ths=0.3)
logging.info(f"Full image EasyOCR: {results}")
for (bbox, text, conf) in results:
if 'kg' in text.lower():
unit = 'kg'
continue
elif 'g' in text.lower():
unit = 'g'
continue
elif 'lb' in text.lower():
unit = 'lb'
continue
text = re.sub(r"[^\d\.]", "", text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if re.fullmatch(r"^\d*\.?\d*$", text):
try:
weight = float(text)
if unit == 'g':
weight /= 1000
elif unit == 'lb':
weight *= 0.453592
range_score = 1.2 if 0.00001 <= weight <= 10000 else 0.4
digit_count = len(text.replace('.', ''))
digit_score = 1.2 if 1 <= digit_count <= 8 else 0.5
score = conf * range_score * digit_score * 0.7
candidates.append((text, conf, score, unit))
logging.info(f"Full image candidate: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
except ValueError:
logging.warning(f"Could not convert '{text}' to float (full image).")
if not candidates:
logging.info("No valid weight detected.")
return "Not detected", 0.0
best_weight, best_conf, best_score, best_unit = max(candidates, key=lambda x: x[2])
if "." in best_weight:
int_part, dec_part = best_weight.split(".")
int_part = int_part.lstrip("0") or "0"
dec_part = dec_part.rstrip('0')
best_weight = f"{int_part}.{dec_part}" if dec_part else int_part
else:
best_weight = best_weight.lstrip('0') or "0"
try:
final_weight = float(best_weight)
if final_weight < 0.00001 or final_weight > 10000:
best_conf *= 0.4
elif final_weight == 0 and best_conf < 0.95:
best_conf *= 0.5
except ValueError:
pass
logging.info(f"Final weight: {best_weight} kg, Confidence: {round(best_conf * 100, 2)}%, Unit: {best_unit or 'none'}")
return best_weight, round(best_conf * 100, 2)
except Exception as e:
logging.error(f"Weight extraction failed: {str(e)}")
return "Not detected", 0.0 |