File size: 152,205 Bytes
f5e0821
 
 
 
 
 
877eedc
f5e0821
 
fe5cebb
 
 
 
877eedc
db1cbec
654a165
fd75294
 
8481b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e0821
fe5cebb
f5e0821
fe5cebb
 
f5e0821
8481b42
 
 
 
 
fd75294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db1cbec
 
 
 
 
 
a96f134
f5e0821
61754ec
f5e0821
db1cbec
 
 
248f443
db1cbec
 
8f98e80
61754ec
2384e68
61754ec
 
db1cbec
2384e68
db1cbec
2384e68
 
 
248f443
db1cbec
 
 
db47567
 
6b080c6
f5e0821
654a165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5cebb
f5e0821
e115d61
f5e0821
 
 
 
fe5cebb
f5e0821
 
fe5cebb
f5e0821
 
654a165
 
 
 
 
bd7c6bf
f5e0821
 
 
 
 
 
 
e115d61
bd7c6bf
e115d61
bd7c6bf
e115d61
bd7c6bf
f5e0821
 
fe5cebb
f5e0821
fd75294
f5e0821
fd75294
 
e115d61
 
 
 
 
 
 
 
 
 
fd75294
 
f5e0821
bd7c6bf
 
 
165a173
 
 
 
 
 
 
fd75294
 
1c92324
 
 
 
fd75294
1c92324
 
165a173
 
 
 
e115d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c92324
 
 
165a173
 
 
 
e115d61
 
 
 
 
 
 
 
 
 
 
 
 
 
1702ce4
bd7c6bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee45d4
 
 
 
fe5cebb
 
 
 
 
 
cee45d4
bd7c6bf
1702ce4
 
bd7c6bf
1702ce4
bd7c6bf
1702ce4
 
cee45d4
 
f5e0821
e115d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165a173
1c92324
cee45d4
 
 
 
fd75294
cee45d4
fd75294
 
e115d61
 
 
 
 
 
 
 
 
 
fd75294
 
cee45d4
 
1c92324
f5e0821
bd7c6bf
 
 
165a173
 
 
fe5cebb
f5e0821
 
 
 
fe5cebb
 
165a173
248f443
fe5cebb
 
 
 
 
 
 
 
165a173
248f443
fe5cebb
 
 
 
 
 
 
 
165a173
248f443
fe5cebb
 
 
 
 
 
3d44e72
8481b42
 
 
9dc46d3
ef5069d
 
 
f5e0821
8481b42
f5e0821
 
 
09db56d
f5e0821
fe5cebb
8481b42
 
 
 
 
 
9dc46d3
73f8121
ef5069d
f5e0821
 
8828171
f5e0821
 
 
fe5cebb
f5e0821
fe5cebb
db1cbec
 
2665f90
ef5069d
 
 
737efc2
ef5069d
 
 
 
 
9dc46d3
737efc2
 
 
bd7c6bf
ef5069d
 
2665f90
 
 
 
 
bd7c6bf
61754ec
db1cbec
cd87fec
6616ba7
8f98e80
 
cf7c042
6616ba7
cf7c042
 
6616ba7
cf7c042
09db56d
 
ef5069d
a65d91d
9dc46d3
a65d91d
ef5069d
a65d91d
9dc46d3
a65d91d
ef5069d
a65d91d
9dc46d3
bd7c6bf
db1cbec
f2f7fa2
579637f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b94ef5d
 
 
 
 
579637f
 
 
 
b94ef5d
 
 
 
efd66db
b94ef5d
 
 
efd66db
b94ef5d
 
 
efd66db
b94ef5d
 
 
 
0025d7f
0bddd1c
0025d7f
0bddd1c
0025d7f
 
 
b94ef5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
579637f
b94ef5d
 
 
 
 
 
 
 
 
 
027a49e
b94ef5d
 
 
 
248f443
b94ef5d
 
 
 
da0507e
b94ef5d
 
 
f2f7fa2
b94ef5d
 
 
f2f7fa2
b94ef5d
 
 
 
 
 
 
 
 
 
 
 
 
 
579637f
 
 
 
 
 
 
 
 
 
9dc46d3
579637f
 
 
 
 
 
 
737efc2
9dc46d3
 
737efc2
9dc46d3
737efc2
 
73f8121
737efc2
 
 
 
 
 
ef5069d
 
 
 
9dc46d3
 
 
17ea549
 
 
ef5069d
 
 
17ea549
9dc46d3
 
ef5069d
17ea549
ef5069d
 
73f8121
 
ef5069d
73f8121
ef5069d
 
73f8121
 
 
ef5069d
 
 
17ea549
 
 
 
a65d91d
 
9dc46d3
a65d91d
9dc46d3
 
 
ef5069d
17ea549
 
 
a65d91d
17ea549
 
 
ef5069d
17ea549
 
 
ef5069d
 
 
 
17ea549
 
 
ef5069d
 
9dc46d3
 
ef5069d
 
 
 
 
 
 
 
 
 
 
 
17ea549
 
 
9dc46d3
 
17ea549
 
 
9dc46d3
 
db1cbec
65bf228
 
 
 
 
 
 
 
ef5069d
65bf228
ef5069d
 
65bf228
737efc2
 
 
ef5069d
 
9dc46d3
ef5069d
 
9dc46d3
 
 
65bf228
 
9dc46d3
 
65bf228
 
9dc46d3
65bf228
 
9dc46d3
 
 
 
 
ef5069d
9dc46d3
737efc2
 
73f8121
737efc2
 
 
 
 
 
ef5069d
 
 
 
 
65bf228
9dc46d3
ef5069d
 
9dc46d3
 
ef5069d
9dc46d3
ef5069d
 
 
73f8121
ef5069d
73f8121
ef5069d
 
9dc46d3
73f8121
 
ef5069d
 
 
9dc46d3
 
 
ef5069d
 
9dc46d3
 
 
 
 
 
 
 
 
 
 
 
ef5069d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dc46d3
 
 
ef5069d
9dc46d3
 
 
65bf228
 
 
 
9dc46d3
ef5069d
65bf228
 
 
ef5069d
65bf228
ef5069d
 
65bf228
737efc2
 
 
ef5069d
 
9dc46d3
ef5069d
 
9dc46d3
 
 
65bf228
 
9dc46d3
 
65bf228
 
 
9dc46d3
65bf228
 
 
9dc46d3
 
 
65bf228
9dc46d3
 
ef5069d
9dc46d3
737efc2
 
 
 
 
 
ef5069d
65bf228
9dc46d3
ef5069d
 
9dc46d3
 
ef5069d
9dc46d3
ef5069d
 
 
73f8121
ef5069d
73f8121
ef5069d
 
9dc46d3
73f8121
 
ef5069d
 
 
9dc46d3
 
 
ef5069d
 
9dc46d3
 
 
 
 
 
 
 
 
 
 
 
 
ef5069d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dc46d3
 
 
ef5069d
9dc46d3
 
 
65bf228
 
 
 
9dc46d3
ef5069d
65bf228
 
 
ef5069d
65bf228
ef5069d
 
65bf228
737efc2
 
 
ef5069d
 
9dc46d3
ef5069d
 
9dc46d3
 
 
65bf228
 
9dc46d3
 
65bf228
 
 
9dc46d3
65bf228
 
9dc46d3
 
 
 
 
 
ef5069d
 
9dc46d3
737efc2
 
73f8121
737efc2
 
 
 
 
 
ef5069d
 
 
 
 
 
9dc46d3
ef5069d
 
9dc46d3
 
ef5069d
9dc46d3
ef5069d
 
 
73f8121
ef5069d
73f8121
ef5069d
 
9dc46d3
73f8121
 
ef5069d
 
 
9dc46d3
 
 
ef5069d
 
9dc46d3
 
 
 
 
 
 
 
 
 
 
 
ef5069d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dc46d3
 
 
ef5069d
9dc46d3
 
 
65bf228
 
 
 
9dc46d3
db1cbec
579637f
 
 
 
db1cbec
 
fe5cebb
 
 
 
 
 
 
 
 
 
 
 
 
f5e0821
09db56d
fe5cebb
09db56d
 
 
 
 
 
f5e0821
 
fe5cebb
 
 
 
f5e0821
fe5cebb
f5e0821
fe5cebb
f5e0821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5cebb
f5e0821
fe5cebb
 
 
 
 
 
 
 
 
 
 
f5e0821
 
 
 
65bf228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5cebb
 
 
 
 
 
 
65bf228
 
 
 
 
 
 
 
09db56d
f5e0821
09db56d
f5e0821
 
fe5cebb
f5e0821
 
 
fe5cebb
 
 
8828171
 
f5e0821
09db56d
f5e0821
 
09db56d
db1cbec
8828171
 
65bf228
 
 
 
 
 
 
 
7d6fae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8828171
f5e0821
 
 
db1cbec
 
f5e0821
fe5cebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8481b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542229d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8481b42
542229d
8481b42
 
 
 
b7e9276
 
8481b42
7a5abd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542229d
 
 
7a5abd6
542229d
 
7a5abd6
 
 
 
 
 
 
 
 
 
8481b42
 
 
 
 
 
542229d
8481b42
 
542229d
8481b42
 
542229d
8481b42
 
 
542229d
 
8481b42
 
 
 
 
 
542229d
8481b42
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bad9c
 
8481b42
c9bad9c
 
 
 
 
 
 
 
8481b42
 
 
c9bad9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8481b42
c9bad9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8481b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e9276
 
 
 
8481b42
 
 
 
 
 
 
 
 
 
 
 
b7e9276
8481b42
b7e9276
8481b42
 
 
 
 
 
 
b7e9276
 
 
 
8481b42
 
 
 
 
 
 
 
 
b7e9276
8481b42
b7e9276
8481b42
 
 
 
 
 
 
b7e9276
 
 
 
8481b42
b7e9276
8481b42
b7e9276
8481b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5069d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e0821
09db56d
8481b42
 
 
f5e0821
654a165
 
 
 
 
 
 
 
8481b42
 
 
 
 
 
 
73f8121
ef5069d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8481b42
 
 
 
 
 
 
 
 
 
 
 
9dc46d3
 
 
 
 
 
 
8481b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09db56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5069d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09db56d
 
 
 
 
 
 
 
 
8481b42
09db56d
 
8481b42
 
 
654a165
 
7a5abd6
 
 
8481b42
 
f2e16b4
 
 
8481b42
 
 
 
 
f5e0821
09db56d
 
 
 
 
 
 
 
 
 
 
 
 
 
e115d61
09db56d
 
 
 
 
 
 
 
 
 
6655309
e115d61
 
 
 
 
 
 
 
6655309
09db56d
 
 
 
1702ce4
09db56d
 
 
 
 
7d6fae7
09db56d
 
7d6fae7
 
 
 
 
 
 
e115d61
09db56d
7d6fae7
 
 
 
 
 
09db56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e115d61
09db56d
 
 
 
 
 
 
 
 
 
6655309
e115d61
 
 
 
 
 
 
 
 
6655309
09db56d
 
 
 
1702ce4
09db56d
 
 
 
 
7d6fae7
09db56d
 
7d6fae7
 
 
 
 
 
 
e115d61
09db56d
7d6fae7
 
 
 
 
 
1702ce4
8481b42
 
9dc46d3
ef5069d
6655309
8481b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dc46d3
73f8121
ef5069d
 
 
 
8481b42
6655309
 
 
 
 
 
 
 
 
 
 
e115d61
 
 
 
 
 
 
6655309
 
8481b42
 
6655309
 
 
 
 
 
e115d61
 
 
 
6655309
 
e115d61
 
 
 
 
 
 
 
 
 
 
8481b42
 
 
 
 
 
 
 
7a5abd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6655309
 
654a165
 
 
6655309
 
 
 
1702ce4
09db56d
8481b42
9dc46d3
ef5069d
eb30d21
8481b42
eb30d21
3d44e72
 
 
 
eb30d21
3d44e72
 
eb30d21
3d44e72
eb30d21
3d44e72
eb30d21
3d44e72
 
8481b42
3d44e72
8481b42
3d44e72
8481b42
3d44e72
 
 
 
 
 
 
 
 
 
 
9dc46d3
73f8121
 
ef5069d
 
 
 
eb30d21
 
3d44e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5069d
3d44e72
 
 
 
 
 
 
 
73f8121
eb30d21
ef5069d
eb30d21
09db56d
eb30d21
8481b42
 
9dc46d3
ef5069d
8481b42
7a5abd6
09db56d
 
 
8481b42
9dc46d3
ef5069d
eb30d21
8481b42
eb30d21
3d44e72
 
 
 
eb30d21
3d44e72
 
eb30d21
3d44e72
e115d61
3d44e72
eb30d21
3d44e72
 
f2e16b4
3d44e72
f2e16b4
3d44e72
f2e16b4
3d44e72
 
 
 
 
 
 
 
 
 
 
9dc46d3
73f8121
 
ef5069d
 
 
 
eb30d21
 
3d44e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5069d
3d44e72
 
 
 
 
 
 
 
 
73f8121
eb30d21
ef5069d
eb30d21
09db56d
eb30d21
f2e16b4
 
9dc46d3
ef5069d
7d6fae7
7a5abd6
09db56d
 
 
f2e16b4
9dc46d3
ef5069d
eb30d21
f2e16b4
eb30d21
3d44e72
 
 
 
eb30d21
3d44e72
 
eb30d21
3d44e72
e115d61
3d44e72
eb30d21
3d44e72
 
f2e16b4
3d44e72
f2e16b4
3d44e72
f2e16b4
3d44e72
 
 
 
 
 
 
 
 
 
 
9dc46d3
73f8121
 
ef5069d
 
 
 
eb30d21
 
3d44e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5069d
3d44e72
 
 
 
 
 
 
 
 
 
 
73f8121
eb30d21
ef5069d
eb30d21
09db56d
eb30d21
f2e16b4
 
9dc46d3
ef5069d
7d6fae7
7a5abd6
f5e0821
 
 
 
 
 
762264d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
import gradio as gr
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import yfinance as yf
import torch
from chronos import ChronosPipeline
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.preprocessing import MinMaxScaler
import plotly.express as px
from typing import Dict, List, Tuple, Optional
import json
import spaces
import gc
import pytz
import time
import random
from scipy import stats
from scipy.optimize import minimize
import warnings
warnings.filterwarnings('ignore')

# Additional imports for advanced features
try:
    from hmmlearn import hmm
    HMM_AVAILABLE = True
except ImportError:
    HMM_AVAILABLE = False
    print("Warning: hmmlearn not available. Regime detection will use simplified methods.")

try:
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.linear_model import LinearRegression
    ENSEMBLE_AVAILABLE = True
except ImportError:
    ENSEMBLE_AVAILABLE = False
    print("Warning: scikit-learn not available. Ensemble methods will be simplified.")

# Initialize global variables
pipeline = None
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler.fit_transform([[-1, 1]])

# Global market data cache
market_data_cache = {}
cache_expiry = {}
CACHE_DURATION = 3600  # 1 hour cache

def retry_yfinance_request(func, max_retries=3, initial_delay=1):
    """
    Retry mechanism for yfinance requests with exponential backoff.
    
    Args:
        func: Function to retry
        max_retries: Maximum number of retry attempts
        initial_delay: Initial delay in seconds before first retry
    
    Returns:
        Result of the function call if successful
    """
    for attempt in range(max_retries):
        try:
            return func()
        except Exception as e:
            if "401" in str(e) and attempt < max_retries - 1:
                # Calculate delay with exponential backoff and jitter
                delay = initial_delay * (2 ** attempt) + random.uniform(0, 1)
                time.sleep(delay)
                continue
            raise e

def clear_gpu_memory():
    """Clear GPU memory cache"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        gc.collect()

@spaces.GPU()
def load_pipeline():
    """Load the Chronos model without GPU configuration"""
    global pipeline
    try:
        if pipeline is None:
            clear_gpu_memory()
            print("Loading Chronos model...")
            pipeline = ChronosPipeline.from_pretrained(
                "amazon/chronos-t5-large",
                device_map="cuda",  # Force CUDA device mapping
                torch_dtype=torch.float16,
                low_cpu_mem_usage=True,
                trust_remote_code=True,
                use_safetensors=True
            )
            # Set model to evaluation mode
            pipeline.model = pipeline.model.eval()
            # Disable gradient computation
            for param in pipeline.model.parameters():
                param.requires_grad = False
            print("Chronos model loaded successfully")
        return pipeline
    except Exception as e:
        print(f"Error loading pipeline: {str(e)}")
        print(f"Error type: {type(e)}")
        print(f"Error details: {str(e)}")
        raise RuntimeError(f"Failed to load model: {str(e)}")

def is_market_open() -> bool:
    """Check if the market is currently open"""
    now = datetime.now()
    # Check if it's a weekday (0 = Monday, 6 = Sunday)
    if now.weekday() >= 5:  # Saturday or Sunday
        return False
    
    # Check if it's during market hours (9:30 AM - 4:00 PM ET)
    et_time = now.astimezone(pytz.timezone('US/Eastern'))
    market_open = et_time.replace(hour=9, minute=30, second=0, microsecond=0)
    market_close = et_time.replace(hour=16, minute=0, second=0, microsecond=0)
    
    return market_open <= et_time <= market_close

def get_next_trading_day() -> datetime:
    """Get the next trading day"""
    now = datetime.now()
    next_day = now + timedelta(days=1)
    
    # Skip weekends
    while next_day.weekday() >= 5:  # Saturday or Sunday
        next_day += timedelta(days=1)
    
    return next_day

def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int = 365) -> pd.DataFrame:
    """
    Fetch historical data using yfinance with enhanced support for intraday data.
    
    Args:
        symbol (str): The stock symbol (e.g., 'AAPL')
        timeframe (str): The timeframe for data ('1d', '1h', '15m')
        lookback_days (int): Number of days to look back
    
    Returns:
        pd.DataFrame: Historical data with OHLCV and technical indicators
    """
    try:
        # Check if market is open for intraday data
        if timeframe in ["1h", "15m"] and not is_market_open():
            next_trading_day = get_next_trading_day()
            raise Exception(f"Market is currently closed. Next trading day is {next_trading_day.strftime('%Y-%m-%d')}")
        
        # Map timeframe to yfinance interval and adjust lookback period
        tf_map = {
            "1d": "1d",
            "1h": "1h",
            "15m": "15m"
        }
        interval = tf_map.get(timeframe, "1d")
        
        # Adjust lookback period based on timeframe and yfinance limits
        if timeframe == "1h":
            lookback_days = min(lookback_days, 60)  # Yahoo allows up to 60 days for hourly data
        elif timeframe == "15m":
            lookback_days = min(lookback_days, 7)   # Yahoo allows up to 7 days for 15m data
        
        # Calculate date range
        end_date = datetime.now()
        start_date = end_date - timedelta(days=lookback_days)
        
        # Fetch data using yfinance with retry mechanism
        ticker = yf.Ticker(symbol)
        
        def fetch_history():
            return ticker.history(
                start=start_date, 
                end=end_date, 
                interval=interval,
                prepost=True,  # Include pre/post market data for intraday
                actions=True,  # Include dividends and splits
                auto_adjust=True,  # Automatically adjust for splits
                back_adjust=True,  # Back-adjust data for splits
                repair=True  # Repair missing data points
            )
        
        df = retry_yfinance_request(fetch_history)
        
        if df.empty:
            raise Exception(f"No data available for {symbol} in {timeframe} timeframe")
        
        # Ensure all required columns are present and numeric
        required_columns = ['Open', 'High', 'Low', 'Close', 'Volume']
        for col in required_columns:
            if col not in df.columns:
                raise Exception(f"Missing required column: {col}")
            df[col] = pd.to_numeric(df[col], errors='coerce')
        
        # Get additional info for structured products with retry mechanism
        def fetch_info():
            info = ticker.info
            if info is None:
                raise Exception(f"Could not fetch company info for {symbol}")
            return info
        
        try:
            info = retry_yfinance_request(fetch_info)
            df['Market_Cap'] = float(info.get('marketCap', 0))
            df['Sector'] = info.get('sector', 'Unknown')
            df['Industry'] = info.get('industry', 'Unknown')
            df['Dividend_Yield'] = float(info.get('dividendYield', 0))
            
            # Add additional company metrics
            df['Enterprise_Value'] = float(info.get('enterpriseValue', 0))
            df['P/E_Ratio'] = float(info.get('trailingPE', 0))
            df['Forward_P/E'] = float(info.get('forwardPE', 0))
            df['PEG_Ratio'] = float(info.get('pegRatio', 0))
            df['Price_to_Book'] = float(info.get('priceToBook', 0))
            df['Price_to_Sales'] = float(info.get('priceToSalesTrailing12Months', 0))
            df['Return_on_Equity'] = float(info.get('returnOnEquity', 0))
            df['Return_on_Assets'] = float(info.get('returnOnAssets', 0))
            df['Debt_to_Equity'] = float(info.get('debtToEquity', 0))
            df['Current_Ratio'] = float(info.get('currentRatio', 0))
            df['Quick_Ratio'] = float(info.get('quickRatio', 0))
            df['Gross_Margin'] = float(info.get('grossMargins', 0))
            df['Operating_Margin'] = float(info.get('operatingMargins', 0))
            df['Net_Margin'] = float(info.get('netIncomeToCommon', 0))
            
        except Exception as e:
            print(f"Warning: Could not fetch company info for {symbol}: {str(e)}")
            # Set default values for missing info
            df['Market_Cap'] = 0.0
            df['Sector'] = 'Unknown'
            df['Industry'] = 'Unknown'
            df['Dividend_Yield'] = 0.0
            df['Enterprise_Value'] = 0.0
            df['P/E_Ratio'] = 0.0
            df['Forward_P/E'] = 0.0
            df['PEG_Ratio'] = 0.0
            df['Price_to_Book'] = 0.0
            df['Price_to_Sales'] = 0.0
            df['Return_on_Equity'] = 0.0
            df['Return_on_Assets'] = 0.0
            df['Debt_to_Equity'] = 0.0
            df['Current_Ratio'] = 0.0
            df['Quick_Ratio'] = 0.0
            df['Gross_Margin'] = 0.0
            df['Operating_Margin'] = 0.0
            df['Net_Margin'] = 0.0
        
        # Calculate technical indicators with adjusted windows based on timeframe
        if timeframe == "1d":
            sma_window_20 = 20
            sma_window_50 = 50
            sma_window_200 = 200
            vol_window = 20
        elif timeframe == "1h":
            sma_window_20 = 20 * 6  # 5 trading days
            sma_window_50 = 50 * 6  # ~10 trading days
            sma_window_200 = 200 * 6  # ~40 trading days
            vol_window = 20 * 6
        else:  # 15m
            sma_window_20 = 20 * 24  # 5 trading days
            sma_window_50 = 50 * 24  # ~10 trading days
            sma_window_200 = 200 * 24  # ~40 trading days
            vol_window = 20 * 24
        
        # Calculate technical indicators
        df['SMA_20'] = df['Close'].rolling(window=sma_window_20, min_periods=1).mean()
        df['SMA_50'] = df['Close'].rolling(window=sma_window_50, min_periods=1).mean()
        df['SMA_200'] = df['Close'].rolling(window=sma_window_200, min_periods=1).mean()
        df['RSI'] = calculate_rsi(df['Close'])
        df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
        df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
        
        # Calculate returns and volatility
        df['Returns'] = df['Close'].pct_change()
        df['Volatility'] = df['Returns'].rolling(window=vol_window, min_periods=1).std()
        df['Annualized_Vol'] = df['Volatility'] * np.sqrt(252)
        
        # Calculate drawdown metrics
        df['Rolling_Max'] = df['Close'].rolling(window=len(df), min_periods=1).max()
        df['Drawdown'] = (df['Close'] - df['Rolling_Max']) / df['Rolling_Max']
        df['Max_Drawdown'] = df['Drawdown'].rolling(window=len(df), min_periods=1).min()
        
        # Calculate liquidity metrics
        df['Avg_Daily_Volume'] = df['Volume'].rolling(window=vol_window, min_periods=1).mean()
        df['Volume_Volatility'] = df['Volume'].rolling(window=vol_window, min_periods=1).std()
        
        # Calculate additional intraday metrics for shorter timeframes
        if timeframe in ["1h", "15m"]:
            # Intraday volatility
            df['Intraday_High_Low'] = (df['High'] - df['Low']) / df['Close']
            df['Intraday_Volatility'] = df['Intraday_High_Low'].rolling(window=vol_window, min_periods=1).mean()
            
            # Volume analysis
            df['Volume_Price_Trend'] = (df['Volume'] * df['Returns']).rolling(window=vol_window, min_periods=1).sum()
            df['Volume_SMA'] = df['Volume'].rolling(window=vol_window, min_periods=1).mean()
            df['Volume_Ratio'] = df['Volume'] / df['Volume_SMA']
            
            # Price momentum
            df['Price_Momentum'] = df['Close'].pct_change(periods=5)
            df['Volume_Momentum'] = df['Volume'].pct_change(periods=5)
        
        # Fill NaN values using forward fill then backward fill
        df = df.ffill().bfill()
        
        # Ensure we have enough data points
        min_required_points = 64  # Minimum required for Chronos
        if len(df) < min_required_points:
            # Try to fetch more historical data with retry mechanism
            extended_start_date = start_date - timedelta(days=min_required_points - len(df))
            
            def fetch_extended_history():
                return ticker.history(
                    start=extended_start_date, 
                    end=start_date, 
                    interval=interval,
                    prepost=True,
                    actions=True,
                    auto_adjust=True,
                    back_adjust=True,
                    repair=True
                )
            
            extended_df = retry_yfinance_request(fetch_extended_history)
            if not extended_df.empty:
                df = pd.concat([extended_df, df])
                df = df.ffill().bfill()
        
        if len(df) < 2:
            raise Exception(f"Insufficient data points for {symbol} in {timeframe} timeframe")
        
        # Final check for any remaining None values
        df = df.fillna(0)
        
        return df
        
    except Exception as e:
        raise Exception(f"Error fetching historical data for {symbol}: {str(e)}")

def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
    """Calculate Relative Strength Index"""
    # Handle None values by forward filling
    prices = prices.ffill().bfill()
    delta = prices.diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
    rs = gain / loss
    return 100 - (100 / (1 + rs))

def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> Tuple[pd.Series, pd.Series]:
    """Calculate MACD and Signal line"""
    # Handle None values by forward filling
    prices = prices.ffill().bfill()
    exp1 = prices.ewm(span=fast, adjust=False).mean()
    exp2 = prices.ewm(span=slow, adjust=False).mean()
    macd = exp1 - exp2
    signal_line = macd.ewm(span=signal, adjust=False).mean()
    return macd, signal_line

def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2) -> Tuple[pd.Series, pd.Series, pd.Series]:
    """Calculate Bollinger Bands"""
    # Handle None values by forward filling
    prices = prices.ffill().bfill()
    middle_band = prices.rolling(window=period).mean()
    std = prices.rolling(window=period).std()
    upper_band = middle_band + (std * std_dev)
    lower_band = middle_band - (std * std_dev)
    return upper_band, middle_band, lower_band

@spaces.GPU()
def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5, strategy: str = "chronos",
                   use_ensemble: bool = True, use_regime_detection: bool = True, use_stress_testing: bool = True,
                   risk_free_rate: float = 0.02, ensemble_weights: Dict = None, 
                   market_index: str = "^GSPC",
                   random_real_points: int = 4, use_smoothing: bool = True, 
                   smoothing_type: str = "exponential", smoothing_window: int = 5, 
                   smoothing_alpha: float = 0.3) -> Tuple[Dict, go.Figure]:
    """
    Make prediction using selected strategy with advanced features.
    
    Args:
        symbol (str): Stock symbol
        timeframe (str): Data timeframe ('1d', '1h', '15m')
        prediction_days (int): Number of days to predict
        strategy (str): Prediction strategy to use
        use_ensemble (bool): Whether to use ensemble methods
        use_regime_detection (bool): Whether to use regime detection
        use_stress_testing (bool): Whether to perform stress testing
        risk_free_rate (float): Risk-free rate for calculations
        ensemble_weights (Dict): Weights for ensemble models
        market_index (str): Market index for correlation analysis
        random_real_points (int): Number of random real points to include in long-horizon context
        use_smoothing (bool): Whether to apply smoothing to predictions
        smoothing_type (str): Type of smoothing to apply ('exponential', 'moving_average', 'kalman', 'savitzky_golay', 'none')
    
    Returns:
        Tuple[Dict, go.Figure]: Trading signals and visualization plot
    """
    try:
        # Get historical data
        df = get_historical_data(symbol, timeframe)
        
        if strategy == "chronos":
            try:
                # Prepare data for Chronos
                prices = df['Close'].values
                chronos_context_size = 64  # Chronos model's context window size (fixed at 64)
                input_context_size = len(prices)  # Available input data can be much larger
                
                # Use a larger range for scaler fitting to get better normalization
                scaler_range = min(input_context_size, chronos_context_size * 2)  # Use up to 128 points for scaler
                
                # Select the most recent chronos_context_size points for the model input
                context_window = prices[-chronos_context_size:]
                
                scaler = MinMaxScaler(feature_range=(-1, 1))
                # Fit scaler on a larger range for better normalization
                scaler.fit(prices[-scaler_range:].reshape(-1, 1))
                normalized_prices = scaler.transform(context_window.reshape(-1, 1)).flatten()
                
                # Ensure we have enough data points for Chronos
                min_data_points = chronos_context_size
                if len(normalized_prices) < min_data_points:
                    padding = np.full(min_data_points - len(normalized_prices), normalized_prices[-1])
                    normalized_prices = np.concatenate([padding, normalized_prices])
                elif len(normalized_prices) > min_data_points:
                    normalized_prices = normalized_prices[-min_data_points:]
                
                # Load pipeline and move to GPU
                pipe = load_pipeline()
                
                # Get the model's device and dtype
                device = torch.device("cuda:0")  # Force CUDA device
                dtype = torch.float16  # Force float16
                print(f"Model device: {device}")
                print(f"Model dtype: {dtype}")
                
                # Convert to tensor and ensure proper shape and device
                context = torch.tensor(normalized_prices, dtype=dtype, device=device)
                
                # Adjust prediction length based on timeframe
                if timeframe == "1d":
                    max_prediction_length = chronos_context_size  # 64 days
                    actual_prediction_length = min(prediction_days, max_prediction_length)
                    trim_length = prediction_days
                elif timeframe == "1h":
                    max_prediction_length = chronos_context_size  # 64 hours
                    actual_prediction_length = min(prediction_days * 24, max_prediction_length)
                    trim_length = prediction_days * 24
                else:  # 15m
                    max_prediction_length = chronos_context_size  # 64 intervals
                    actual_prediction_length = min(prediction_days * 96, max_prediction_length)
                    trim_length = prediction_days * 96
                actual_prediction_length = max(1, actual_prediction_length)
                
                # Use predict_quantiles with proper formatting
                with torch.amp.autocast('cuda'):
                    # Ensure all inputs are on GPU
                    context = context.to(device)
                    
                    # Move quantile levels to GPU
                    quantile_levels = torch.tensor([0.1, 0.5, 0.9], device=device, dtype=dtype)
                    
                    # Ensure prediction length is on GPU
                    prediction_length = torch.tensor(actual_prediction_length, device=device, dtype=torch.long)
                    
                    # Force all model components to GPU
                    pipe.model = pipe.model.to(device)
                    
                    # Move model to evaluation mode
                    pipe.model.eval()
                    
                    # Ensure context is properly shaped and on GPU
                    if len(context.shape) == 1:
                        context = context.unsqueeze(0)
                    context = context.to(device)
                    
                    # Move all model parameters and buffers to GPU
                    for param in pipe.model.parameters():
                        param.data = param.data.to(device)
                    for buffer in pipe.model.buffers():
                        buffer.data = buffer.data.to(device)
                    
                    # Move all model submodules to GPU
                    for module in pipe.model.modules():
                        if hasattr(module, 'to'):
                            module.to(device)
                    
                    # Move all model attributes to GPU
                    for name, value in pipe.model.__dict__.items():
                        if isinstance(value, torch.Tensor):
                            pipe.model.__dict__[name] = value.to(device)
                    
                    # Move all model config tensors to GPU
                    if hasattr(pipe.model, 'config'):
                        for key, value in pipe.model.config.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                setattr(pipe.model.config, key, value.to(device))
                    
                    # Move all pipeline tensors to GPU
                    for name, value in pipe.__dict__.items():
                        if isinstance(value, torch.Tensor):
                            setattr(pipe, name, value.to(device))
                    
                    # Ensure all model states are on GPU
                    if hasattr(pipe.model, 'state_dict'):
                        state_dict = pipe.model.state_dict()
                        for key in state_dict:
                            if isinstance(state_dict[key], torch.Tensor):
                                state_dict[key] = state_dict[key].to(device)
                        pipe.model.load_state_dict(state_dict)
                    
                    # Move any additional components to GPU
                    if hasattr(pipe, 'tokenizer'):
                        # Move tokenizer to GPU if it supports it
                        if hasattr(pipe.tokenizer, 'to'):
                            pipe.tokenizer = pipe.tokenizer.to(device)
                        
                        # Move all tokenizer tensors to GPU
                        for name, value in pipe.tokenizer.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                setattr(pipe.tokenizer, name, value.to(device))
                        
                        # Handle MeanScaleUniformBins specific attributes
                        if hasattr(pipe.tokenizer, 'bins'):
                            if isinstance(pipe.tokenizer.bins, torch.Tensor):
                                pipe.tokenizer.bins = pipe.tokenizer.bins.to(device)
                        
                        if hasattr(pipe.tokenizer, 'scale'):
                            if isinstance(pipe.tokenizer.scale, torch.Tensor):
                                pipe.tokenizer.scale = pipe.tokenizer.scale.to(device)
                        
                        if hasattr(pipe.tokenizer, 'mean'):
                            if isinstance(pipe.tokenizer.mean, torch.Tensor):
                                pipe.tokenizer.mean = pipe.tokenizer.mean.to(device)
                        
                        # Move any additional tensors in the tokenizer's attributes to GPU
                        for name, value in pipe.tokenizer.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                pipe.tokenizer.__dict__[name] = value.to(device)
                        
                        # Remove the EOS token handling since MeanScaleUniformBins doesn't use it
                        if hasattr(pipe.tokenizer, '_append_eos_token'):
                            # Create a wrapper that just returns the input tensors
                            def wrapped_append_eos(token_ids, attention_mask):
                                return token_ids, attention_mask
                            pipe.tokenizer._append_eos_token = wrapped_append_eos
                    
                    # Force synchronization again to ensure all tensors are on GPU
                    torch.cuda.synchronize()
                    
                    # Ensure all model components are in eval mode
                    pipe.model.eval()
                    
                    # Move any additional tensors in the model's config to GPU
                    if hasattr(pipe.model, 'config'):
                        for key, value in pipe.model.config.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                setattr(pipe.model.config, key, value.to(device))
                    
                    # Move any additional tensors in the model's state dict to GPU
                    if hasattr(pipe.model, 'state_dict'):
                        state_dict = pipe.model.state_dict()
                        for key in state_dict:
                            if isinstance(state_dict[key], torch.Tensor):
                                state_dict[key] = state_dict[key].to(device)
                        pipe.model.load_state_dict(state_dict)
                    
                    # Move any additional tensors in the model's buffers to GPU
                    for name, buffer in pipe.model.named_buffers():
                        if buffer is not None:
                            pipe.model.register_buffer(name, buffer.to(device))
                    
                    # Move any additional tensors in the model's parameters to GPU
                    for name, param in pipe.model.named_parameters():
                        if param is not None:
                            param.data = param.data.to(device)
                    
                    # Move any additional tensors in the model's attributes to GPU
                    for name, value in pipe.model.__dict__.items():
                        if isinstance(value, torch.Tensor):
                            pipe.model.__dict__[name] = value.to(device)
                    
                    # Move any additional tensors in the model's modules to GPU
                    for name, module in pipe.model.named_modules():
                        if hasattr(module, 'to'):
                            module.to(device)
                        # Move any tensors in the module's __dict__
                        for key, value in module.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                setattr(module, key, value.to(device))
                    
                    # Force synchronization again to ensure all tensors are on GPU
                    torch.cuda.synchronize()
                    
                    # Ensure tokenizer is on GPU and all its tensors are on GPU
                    if hasattr(pipe, 'tokenizer'):
                        # Move tokenizer to GPU if it supports it
                        if hasattr(pipe.tokenizer, 'to'):
                            pipe.tokenizer = pipe.tokenizer.to(device)
                        
                        # Move all tokenizer tensors to GPU
                        for name, value in pipe.tokenizer.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                setattr(pipe.tokenizer, name, value.to(device))
                        
                        # Handle MeanScaleUniformBins specific attributes
                        if hasattr(pipe.tokenizer, 'bins'):
                            if isinstance(pipe.tokenizer.bins, torch.Tensor):
                                pipe.tokenizer.bins = pipe.tokenizer.bins.to(device)
                        
                        if hasattr(pipe.tokenizer, 'scale'):
                            if isinstance(pipe.tokenizer.scale, torch.Tensor):
                                pipe.tokenizer.scale = pipe.tokenizer.scale.to(device)
                        
                        if hasattr(pipe.tokenizer, 'mean'):
                            if isinstance(pipe.tokenizer.mean, torch.Tensor):
                                pipe.tokenizer.mean = pipe.tokenizer.mean.to(device)
                        
                        # Move any additional tensors in the tokenizer's attributes to GPU
                        for name, value in pipe.tokenizer.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                pipe.tokenizer.__dict__[name] = value.to(device)
                    
                    # Force synchronization again to ensure all tensors are on GPU
                    torch.cuda.synchronize()
                    
                    # Make prediction
                    quantiles, mean = pipe.predict_quantiles(
                        context=context,
                        prediction_length=actual_prediction_length,
                        quantile_levels=[0.1, 0.5, 0.9]
                    )
                
                if quantiles is None or mean is None:
                    raise ValueError("Chronos returned empty prediction")
                
                print(f"Quantiles shape: {quantiles.shape}, Mean shape: {mean.shape}")
                
                # Convert to numpy arrays
                quantiles = quantiles.detach().cpu().numpy()
                mean = mean.detach().cpu().numpy()
                
                # Denormalize predictions using the same scaler as context
                mean_pred = scaler.inverse_transform(mean.reshape(-1, 1)).flatten()
                lower_bound = scaler.inverse_transform(quantiles[0, :, 0].reshape(-1, 1)).flatten()
                upper_bound = scaler.inverse_transform(quantiles[0, :, 2].reshape(-1, 1)).flatten()
                
                # Calculate standard deviation from quantiles
                std_pred = (upper_bound - lower_bound) / (2 * 1.645)
                
                # Check for discontinuity and apply continuity correction
                last_actual = prices[-1]
                first_pred = mean_pred[0]
                if abs(first_pred - last_actual) > max(1e-6, 0.005 * abs(last_actual)):  # Further reduced threshold
                    print(f"Warning: Discontinuity detected between last actual ({last_actual}) and first prediction ({first_pred})")
                    # Apply continuity correction to first prediction
                    mean_pred[0] = last_actual
                    # Adjust subsequent predictions to maintain trend with optional smoothing
                    if len(mean_pred) > 1:
                        # Calculate the trend from the original prediction
                        original_trend = mean_pred[1] - first_pred
                        # Apply the same trend but starting from the last actual value
                        for i in range(1, len(mean_pred)):
                            mean_pred[i] = last_actual + original_trend * i
                        
                        # Apply financial smoothing if enabled
                        if use_smoothing:
                            mean_pred = apply_financial_smoothing(mean_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
                
                # If we had to limit the prediction length, extend the prediction recursively
                if actual_prediction_length < trim_length:
                    extended_mean_pred = mean_pred.copy()
                    extended_std_pred = std_pred.copy()
                    
                    # Store the original scaler for consistency
                    original_scaler = scaler
                    
                    # Calculate the number of extension steps needed
                    remaining_steps = trim_length - actual_prediction_length
                    steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
                    
                    for step in range(steps_needed):
                        # Use all available datapoints for context, including predictions
                        # This allows the model to build upon its own predictions for better long-horizon forecasting
                        all_available_data = np.concatenate([prices, extended_mean_pred])
                        
                        # If we have more data than chronos_context_size, use the most recent chronos_context_size points
                        # Otherwise, use all available data (this allows for longer context when available)
                        if len(all_available_data) > chronos_context_size:
                            context_window = all_available_data[-chronos_context_size:]
                        else:
                            context_window = all_available_data
                        
                        # Use the original scaler to maintain consistency - fit on historical data only
                        # but transform the combined context window
                        normalized_context = original_scaler.transform(context_window.reshape(-1, 1)).flatten()
                        context = torch.tensor(normalized_context, dtype=dtype, device=device)
                        if len(context.shape) == 1:
                            context = context.unsqueeze(0)
                        
                        # Calculate next prediction length based on timeframe
                        if timeframe == "1d":
                            next_length = min(max_prediction_length, remaining_steps)
                        elif timeframe == "1h":
                            next_length = min(max_prediction_length, remaining_steps)
                        else:
                            next_length = min(max_prediction_length, remaining_steps)
                        
                        with torch.amp.autocast('cuda'):
                            next_quantiles, next_mean = pipe.predict_quantiles(
                                context=context,
                                prediction_length=next_length,
                                quantile_levels=[0.1, 0.5, 0.9]
                            )
                        
                        # Convert predictions to numpy and denormalize using original scaler
                        next_mean = next_mean.detach().cpu().numpy()
                        next_quantiles = next_quantiles.detach().cpu().numpy()
                        
                        # Denormalize predictions using the original scaler
                        next_mean_pred = original_scaler.inverse_transform(next_mean.reshape(-1, 1)).flatten()
                        next_lower = original_scaler.inverse_transform(next_quantiles[0, :, 0].reshape(-1, 1)).flatten()
                        next_upper = original_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
                        
                        # Calculate standard deviation
                        next_std_pred = (next_upper - next_lower) / (2 * 1.645)
                        
                        # Check for discontinuity and apply continuity correction
                        if abs(next_mean_pred[0] - extended_mean_pred[-1]) > max(1e-6, 0.05 * abs(extended_mean_pred[-1])):
                            print(f"Warning: Discontinuity detected between last prediction ({extended_mean_pred[-1]}) and next prediction ({next_mean_pred[0]})")
                            # Apply continuity correction to first prediction
                            next_mean_pred[0] = extended_mean_pred[-1]
                            # Adjust subsequent predictions to maintain trend
                            if len(next_mean_pred) > 1:
                                original_trend = next_mean_pred[1] - next_mean_pred[0]
                                for i in range(1, len(next_mean_pred)):
                                    next_mean_pred[i] = extended_mean_pred[-1] + original_trend * i
                        
                        # Apply financial smoothing if enabled
                        if use_smoothing and len(next_mean_pred) > 1:
                            next_mean_pred = apply_financial_smoothing(next_mean_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
                        
                        # Append predictions
                        extended_mean_pred = np.concatenate([extended_mean_pred, next_mean_pred])
                        extended_std_pred = np.concatenate([extended_std_pred, next_std_pred])
                        remaining_steps -= len(next_mean_pred)
                        if remaining_steps <= 0:
                            break
                    
                    # Trim to exact prediction length if needed
                    mean_pred = extended_mean_pred[:trim_length]
                    std_pred = extended_std_pred[:trim_length]
                
                # Extend Chronos forecasting to volume and technical indicators
                volume_pred = None
                rsi_pred = None
                macd_pred = None
                
                try:
                    # Prepare volume data for Chronos
                    volume_data = df['Volume'].values
                    if len(volume_data) >= chronos_context_size:
                        # Normalize volume data
                        scaler_range = min(len(volume_data), chronos_context_size * 2)
                        context_window = volume_data[-chronos_context_size:]
                        volume_scaler = MinMaxScaler(feature_range=(-1, 1))
                        # Fit scaler on a larger range for better normalization
                        volume_scaler.fit(volume_data[-scaler_range:].reshape(-1, 1))
                        normalized_volume = volume_scaler.transform(context_window.reshape(-1, 1)).flatten()
                        if len(normalized_volume) < chronos_context_size:
                            padding = np.full(chronos_context_size - len(normalized_volume), normalized_volume[-1])
                            normalized_volume = np.concatenate([padding, normalized_volume])
                        elif len(normalized_volume) > chronos_context_size:
                            normalized_volume = normalized_volume[-chronos_context_size:]
                        volume_context = torch.tensor(normalized_volume, dtype=dtype, device=device)
                        if len(volume_context.shape) == 1:
                            volume_context = volume_context.unsqueeze(0)
                        with torch.amp.autocast('cuda'):
                            volume_quantiles, volume_mean = pipe.predict_quantiles(
                                context=volume_context,
                                prediction_length=actual_prediction_length,
                                quantile_levels=[0.1, 0.5, 0.9]
                            )
                        volume_quantiles = volume_quantiles.detach().cpu().numpy()
                        volume_mean = volume_mean.detach().cpu().numpy()
                        volume_pred = volume_scaler.inverse_transform(volume_mean.reshape(-1, 1)).flatten()
                        lower_bound = volume_scaler.inverse_transform(volume_quantiles[0, :, 0].reshape(-1, 1)).flatten()
                        upper_bound = volume_scaler.inverse_transform(volume_quantiles[0, :, 2].reshape(-1, 1)).flatten()
                        std_pred_vol = (upper_bound - lower_bound) / (2 * 1.645)
                        last_actual = volume_data[-1]
                        first_pred = volume_pred[0]
                        if abs(first_pred - last_actual) > max(1e-6, 0.005 * abs(last_actual)):
                            print(f"Warning: Discontinuity detected between last actual volume ({last_actual}) and first prediction ({first_pred})")
                            # Apply continuity correction
                            volume_pred[0] = last_actual
                            # Adjust subsequent predictions to maintain trend with optional smoothing
                            if len(volume_pred) > 1:
                                # Calculate the trend from the original prediction
                                original_trend = volume_pred[1] - first_pred
                                # Apply the same trend but starting from the last actual value
                                for i in range(1, len(volume_pred)):
                                    volume_pred[i] = last_actual + original_trend * i
                                
                                # Apply financial smoothing if enabled
                                if use_smoothing:
                                    volume_pred = apply_financial_smoothing(volume_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
                        
                        # Extend volume predictions if needed
                        if actual_prediction_length < trim_length:
                            extended_volume_pred = volume_pred.copy()
                            extended_volume_std = std_pred_vol.copy()
                            remaining_steps = trim_length - actual_prediction_length
                            steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
                            
                            for step in range(steps_needed):
                                # Use all available datapoints for context, including predictions
                                # This allows the model to build upon its own predictions for better long-horizon forecasting
                                all_available_data = np.concatenate([volume_data, extended_volume_pred])
                                
                                # If we have more data than chronos_context_size, use the most recent chronos_context_size points
                                # Otherwise, use all available data (this allows for longer context when available)
                                if len(all_available_data) > chronos_context_size:
                                    context_window = all_available_data[-chronos_context_size:]
                                else:
                                    context_window = all_available_data
                                
                                # Use the original volume scaler to maintain consistency - fit on historical data only
                                # but transform the combined context window
                                normalized_context = volume_scaler.transform(context_window.reshape(-1, 1)).flatten()
                                context = torch.tensor(normalized_context, dtype=dtype, device=device)
                                if len(context.shape) == 1:
                                    context = context.unsqueeze(0)
                                
                                next_length = min(chronos_context_size, remaining_steps)
                                with torch.amp.autocast('cuda'):
                                    next_quantiles, next_mean = pipe.predict_quantiles(
                                        context=context,
                                        prediction_length=next_length,
                                        quantile_levels=[0.1, 0.5, 0.9]
                                    )
                                next_mean = next_mean.detach().cpu().numpy()
                                next_quantiles = next_quantiles.detach().cpu().numpy()
                                next_mean_pred = volume_scaler.inverse_transform(next_mean.reshape(-1, 1)).flatten()
                                next_lower = volume_scaler.inverse_transform(next_quantiles[0, :, 0].reshape(-1, 1)).flatten()
                                next_upper = volume_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
                                next_std_pred = (next_upper - next_lower) / (2 * 1.645)
                                
                                # Check for discontinuity and apply continuity correction
                                if abs(next_mean_pred[0] - extended_volume_pred[-1]) > max(1e-6, 0.05 * abs(extended_volume_pred[-1])):
                                    print(f"Warning: Discontinuity detected between last volume prediction ({extended_volume_pred[-1]}) and next prediction ({next_mean_pred[0]})")
                                    next_mean_pred[0] = extended_volume_pred[-1]
                                    if len(next_mean_pred) > 1:
                                        original_trend = next_mean_pred[1] - next_mean_pred[0]
                                        for i in range(1, len(next_mean_pred)):
                                            next_mean_pred[i] = extended_volume_pred[-1] + original_trend * i
                                
                                # Apply financial smoothing if enabled
                                if use_smoothing and len(next_mean_pred) > 1:
                                    next_mean_pred = apply_financial_smoothing(next_mean_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
                                
                                extended_volume_pred = np.concatenate([extended_volume_pred, next_mean_pred])
                                extended_volume_std = np.concatenate([extended_volume_std, next_std_pred])
                                remaining_steps -= len(next_mean_pred)
                                if remaining_steps <= 0:
                                    break
                            volume_pred = extended_volume_pred[:trim_length]
                    else:
                        avg_volume = df['Volume'].mean()
                        volume_pred = np.full(trim_length, avg_volume)
                except Exception as e:
                    print(f"Volume prediction error: {str(e)}")
                    # Fallback: use historical average
                    avg_volume = df['Volume'].mean()
                    volume_pred = np.full(trim_length, avg_volume)
                
                try:
                    # Prepare RSI data for Chronos
                    rsi_data = df['RSI'].values
                    if len(rsi_data) >= chronos_context_size and not np.any(np.isnan(rsi_data)):
                        # RSI is already normalized (0-100), but we'll scale it to (-1, 1)
                        scaler_range = min(len(rsi_data), chronos_context_size * 2)
                        context_window = rsi_data[-chronos_context_size:]
                        rsi_scaler = MinMaxScaler(feature_range=(-1, 1))
                        # Fit scaler on a larger range for better normalization
                        rsi_scaler.fit(rsi_data[-scaler_range:].reshape(-1, 1))
                        normalized_rsi = rsi_scaler.transform(context_window.reshape(-1, 1)).flatten()
                        if len(normalized_rsi) < chronos_context_size:
                            padding = np.full(chronos_context_size - len(normalized_rsi), normalized_rsi[-1])
                            normalized_rsi = np.concatenate([padding, normalized_rsi])
                        elif len(normalized_rsi) > chronos_context_size:
                            normalized_rsi = normalized_rsi[-chronos_context_size:]
                        rsi_context = torch.tensor(normalized_rsi, dtype=dtype, device=device)
                        if len(rsi_context.shape) == 1:
                            rsi_context = rsi_context.unsqueeze(0)
                        with torch.amp.autocast('cuda'):
                            rsi_quantiles, rsi_mean = pipe.predict_quantiles(
                                context=rsi_context,
                                prediction_length=actual_prediction_length,
                                quantile_levels=[0.1, 0.5, 0.9]
                            )
                        # Convert and denormalize RSI predictions
                        rsi_quantiles = rsi_quantiles.detach().cpu().numpy()
                        rsi_mean = rsi_mean.detach().cpu().numpy()
                        rsi_pred = rsi_scaler.inverse_transform(rsi_mean.reshape(-1, 1)).flatten()
                        # Clamp RSI to valid range (0-100)
                        lower_bound = rsi_scaler.inverse_transform(rsi_quantiles[0, :, 0].reshape(-1, 1)).flatten()
                        upper_bound = rsi_scaler.inverse_transform(rsi_quantiles[0, :, 2].reshape(-1, 1)).flatten()
                        std_pred_rsi = (upper_bound - lower_bound) / (2 * 1.645)
                        rsi_pred = np.clip(rsi_pred, 0, 100)
                        last_actual = rsi_data[-1]
                        first_pred = rsi_pred[0]
                        if abs(first_pred - last_actual) > max(1e-6, 0.005 * abs(last_actual)):
                            print(f"Warning: Discontinuity detected between last actual RSI ({last_actual}) and first prediction ({first_pred})")
                            # Apply continuity correction
                            rsi_pred[0] = last_actual
                            if len(rsi_pred) > 1:
                                trend = rsi_pred[1] - first_pred
                                rsi_pred[1:] = rsi_pred[1:] - first_pred + last_actual
                                rsi_pred = np.clip(rsi_pred, 0, 100)  # Re-clip after adjustment
                        
                        # Extend RSI predictions if needed
                        if actual_prediction_length < trim_length:
                            extended_rsi_pred = rsi_pred.copy()
                            extended_rsi_std = std_pred_rsi.copy()
                            remaining_steps = trim_length - actual_prediction_length
                            steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
                            
                            for step in range(steps_needed):
                                # Use all available datapoints for context, including predictions
                                # This allows the model to build upon its own predictions for better long-horizon forecasting
                                all_available_data = np.concatenate([rsi_data, extended_rsi_pred])
                                
                                # If we have more data than chronos_context_size, use the most recent chronos_context_size points
                                # Otherwise, use all available data (this allows for longer context when available)
                                if len(all_available_data) > chronos_context_size:
                                    context_window = all_available_data[-chronos_context_size:]
                                else:
                                    context_window = all_available_data
                                
                                # Use the original RSI scaler to maintain consistency - fit on historical data only
                                # but transform the combined context window
                                normalized_context = rsi_scaler.transform(context_window.reshape(-1, 1)).flatten()
                                context = torch.tensor(normalized_context, dtype=dtype, device=device)
                                if len(context.shape) == 1:
                                    context = context.unsqueeze(0)
                                
                                next_length = min(chronos_context_size, remaining_steps)
                                with torch.amp.autocast('cuda'):
                                    next_quantiles, next_mean = pipe.predict_quantiles(
                                        context=context,
                                        prediction_length=next_length,
                                        quantile_levels=[0.1, 0.5, 0.9]
                                    )
                                next_mean = next_mean.detach().cpu().numpy()
                                next_quantiles = next_quantiles.detach().cpu().numpy()
                                next_mean_pred = rsi_scaler.inverse_transform(next_mean.reshape(-1, 1)).flatten()
                                next_lower = rsi_scaler.inverse_transform(next_quantiles[0, :, 0].reshape(-1, 1)).flatten()
                                next_upper = rsi_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
                                next_std_pred = (next_upper - next_lower) / (2 * 1.645)
                                next_mean_pred = np.clip(next_mean_pred, 0, 100)
                                
                                # Check for discontinuity and apply continuity correction
                                if abs(next_mean_pred[0] - extended_rsi_pred[-1]) > max(1e-6, 0.005 * abs(extended_rsi_pred[-1])):
                                    print(f"Warning: Discontinuity detected between last RSI prediction ({extended_rsi_pred[-1]}) and next prediction ({next_mean_pred[0]})")
                                    next_mean_pred[0] = extended_rsi_pred[-1]
                                    if len(next_mean_pred) > 1:
                                        original_trend = next_mean_pred[1] - next_mean_pred[0]
                                        for i in range(1, len(next_mean_pred)):
                                            next_mean_pred[i] = extended_rsi_pred[-1] + original_trend * i
                                        next_mean_pred = np.clip(next_mean_pred, 0, 100)
                                
                                # Apply financial smoothing if enabled
                                if use_smoothing and len(next_mean_pred) > 1:
                                    next_mean_pred = apply_financial_smoothing(next_mean_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
                                    next_mean_pred = np.clip(next_mean_pred, 0, 100)
                                
                                extended_rsi_pred = np.concatenate([extended_rsi_pred, next_mean_pred])
                                extended_rsi_std = np.concatenate([extended_rsi_std, next_std_pred])
                                remaining_steps -= len(next_mean_pred)
                                if remaining_steps <= 0:
                                    break
                            rsi_pred = extended_rsi_pred[:trim_length]
                    else:
                        last_rsi = df['RSI'].iloc[-1]
                        rsi_pred = np.full(trim_length, last_rsi)
                except Exception as e:
                    print(f"RSI prediction error: {str(e)}")
                    # Fallback: use last known RSI value
                    last_rsi = df['RSI'].iloc[-1]
                    rsi_pred = np.full(trim_length, last_rsi)
                
                try:
                    # Prepare MACD data for Chronos
                    macd_data = df['MACD'].values
                    if len(macd_data) >= chronos_context_size and not np.any(np.isnan(macd_data)):
                        # Normalize MACD data
                        scaler_range = min(len(macd_data), chronos_context_size * 2)
                        context_window = macd_data[-chronos_context_size:]
                        macd_scaler = MinMaxScaler(feature_range=(-1, 1))
                        # Fit scaler on a larger range for better normalization
                        macd_scaler.fit(macd_data[-scaler_range:].reshape(-1, 1))
                        normalized_macd = macd_scaler.transform(context_window.reshape(-1, 1)).flatten()
                        if len(normalized_macd) < chronos_context_size:
                            padding = np.full(chronos_context_size - len(normalized_macd), normalized_macd[-1])
                            normalized_macd = np.concatenate([padding, normalized_macd])
                        elif len(normalized_macd) > chronos_context_size:
                            normalized_macd = normalized_macd[-chronos_context_size:]
                        macd_context = torch.tensor(normalized_macd, dtype=dtype, device=device)
                        if len(macd_context.shape) == 1:
                            macd_context = macd_context.unsqueeze(0)
                        with torch.amp.autocast('cuda'):
                            macd_quantiles, macd_mean = pipe.predict_quantiles(
                                context=macd_context,
                                prediction_length=actual_prediction_length,
                                quantile_levels=[0.1, 0.5, 0.9]
                            )
                        # Convert and denormalize MACD predictions
                        macd_quantiles = macd_quantiles.detach().cpu().numpy()
                        macd_mean = macd_mean.detach().cpu().numpy()
                        macd_pred = macd_scaler.inverse_transform(macd_mean.reshape(-1, 1)).flatten()
                        lower_bound = macd_scaler.inverse_transform(macd_quantiles[0, :, 0].reshape(-1, 1)).flatten()
                        upper_bound = macd_scaler.inverse_transform(macd_quantiles[0, :, 2].reshape(-1, 1)).flatten()
                        std_pred_macd = (upper_bound - lower_bound) / (2 * 1.645)
                        last_actual = macd_data[-1]
                        first_pred = macd_pred[0]

                        # Check for discontinuity and apply continuity correction
                        if abs(first_pred - last_actual) > max(1e-6, 0.005 * abs(last_actual)):
                            print(f"Warning: Discontinuity detected between last actual MACD ({last_actual}) and first prediction ({first_pred})")
                            # Apply continuity correction
                            macd_pred[0] = last_actual
                            # Adjust subsequent predictions to maintain trend with optional smoothing
                            if len(macd_pred) > 1:
                                # Calculate the trend from the original prediction
                                original_trend = macd_pred[1] - first_pred
                                # Apply the same trend but starting from the last actual value
                                for i in range(1, len(macd_pred)):
                                    macd_pred[i] = last_actual + original_trend * i
                                
                                # Apply financial smoothing if enabled
                                if use_smoothing:
                                    macd_pred = apply_financial_smoothing(macd_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
                        
                        # Extend MACD predictions if needed
                        if actual_prediction_length < trim_length:
                            extended_macd_pred = macd_pred.copy()
                            extended_macd_std = std_pred_macd.copy()
                            remaining_steps = trim_length - actual_prediction_length
                            steps_needed = (remaining_steps + actual_prediction_length - 1) // actual_prediction_length
                            
                            for step in range(steps_needed):
                                # Use all available datapoints for context, including predictions
                                # This allows the model to build upon its own predictions for better long-horizon forecasting
                                all_available_data = np.concatenate([macd_data, extended_macd_pred])
                                
                                # If we have more data than chronos_context_size, use the most recent chronos_context_size points
                                # Otherwise, use all available data (this allows for longer context when available)
                                if len(all_available_data) > chronos_context_size:
                                    context_window = all_available_data[-chronos_context_size:]
                                else:
                                    context_window = all_available_data
                                
                                # Use the original MACD scaler to maintain consistency - fit on historical data only
                                # but transform the combined context window
                                normalized_context = macd_scaler.transform(context_window.reshape(-1, 1)).flatten()
                                context = torch.tensor(normalized_context, dtype=dtype, device=device)
                                if len(context.shape) == 1:
                                    context = context.unsqueeze(0)
                                
                                next_length = min(chronos_context_size, remaining_steps)
                                with torch.amp.autocast('cuda'):
                                    next_quantiles, next_mean = pipe.predict_quantiles(
                                        context=context,
                                        prediction_length=next_length,
                                        quantile_levels=[0.1, 0.5, 0.9]
                                    )
                                next_mean = next_mean.detach().cpu().numpy()
                                next_quantiles = next_quantiles.detach().cpu().numpy()
                                next_mean_pred = macd_scaler.inverse_transform(next_mean.reshape(-1, 1)).flatten()
                                next_lower = macd_scaler.inverse_transform(next_quantiles[0, :, 0].reshape(-1, 1)).flatten()
                                next_upper = macd_scaler.inverse_transform(next_quantiles[0, :, 2].reshape(-1, 1)).flatten()
                                next_std_pred = (next_upper - next_lower) / (2 * 1.645)
                                
                                # Check for discontinuity and apply continuity correction
                                if abs(next_mean_pred[0] - extended_macd_pred[-1]) > max(1e-6, 0.05 * abs(extended_macd_pred[-1])):
                                    print(f"Warning: Discontinuity detected between last MACD prediction ({extended_macd_pred[-1]}) and next prediction ({next_mean_pred[0]})")
                                    next_mean_pred[0] = extended_macd_pred[-1]
                                    if len(next_mean_pred) > 1:
                                        original_trend = next_mean_pred[1] - next_mean_pred[0]
                                        for i in range(1, len(next_mean_pred)):
                                            next_mean_pred[i] = extended_macd_pred[-1] + original_trend * i
                                
                                # Apply financial smoothing if enabled
                                if use_smoothing and len(next_mean_pred) > 1:
                                    next_mean_pred = apply_financial_smoothing(next_mean_pred, smoothing_type, smoothing_window, smoothing_alpha, 3, use_smoothing)
                                
                                extended_macd_pred = np.concatenate([extended_macd_pred, next_mean_pred])
                                extended_macd_std = np.concatenate([extended_macd_std, next_std_pred])
                                remaining_steps -= len(next_mean_pred)
                                if remaining_steps <= 0:
                                    break
                            macd_pred = extended_macd_pred[:trim_length]
                    else:
                        last_macd = df['MACD'].iloc[-1]
                        macd_pred = np.full(trim_length, last_macd)
                except Exception as e:
                    print(f"MACD prediction error: {str(e)}")
                    # Fallback: use last known MACD value
                    last_macd = df['MACD'].iloc[-1]
                    macd_pred = np.full(trim_length, last_macd)
            except Exception as e:
                print(f"Chronos prediction error: {str(e)}")
                print(f"Error type: {type(e)}")
                print(f"Error details: {str(e)}")
                raise
        
        if strategy == "technical":
            # Technical analysis based prediction
            last_price = df['Close'].iloc[-1]
            rsi = df['RSI'].iloc[-1]
            macd = df['MACD'].iloc[-1]
            macd_signal = df['MACD_Signal'].iloc[-1]
            
            # Simple prediction based on technical indicators
            trend = 1 if (rsi > 50 and macd > macd_signal) else -1
            volatility = df['Volatility'].iloc[-1]
            
            # Generate predictions
            mean_pred = np.array([last_price * (1 + trend * volatility * i) for i in range(1, prediction_days + 1)])
            std_pred = np.array([volatility * last_price * i for i in range(1, prediction_days + 1)])
        
        # Create prediction dates based on timeframe
        last_date = df.index[-1]
        if timeframe == "1d":
            pred_dates = pd.date_range(start=last_date + timedelta(days=1), periods=prediction_days)
        elif timeframe == "1h":
            pred_dates = pd.date_range(start=last_date + timedelta(hours=1), periods=prediction_days * 24)
        else:  # 15m
            pred_dates = pd.date_range(start=last_date + timedelta(minutes=15), periods=prediction_days * 96)
        
        # Create visualization
        fig = make_subplots(rows=3, cols=1, 
                           shared_xaxes=True,
                           vertical_spacing=0.05,
                           subplot_titles=('Price Prediction', 'Technical Indicators', 'Volume'))
        
        # Add historical price
        fig.add_trace(
            go.Scatter(x=df.index, y=df['Close'], name='Historical Price',
                      line=dict(color='blue')),
            row=1, col=1
        )
        
        # Add prediction mean
        fig.add_trace(
            go.Scatter(x=pred_dates, y=mean_pred, name='Predicted Price',
                      line=dict(color='red')),
            row=1, col=1
        )
        
        # Add confidence intervals
        fig.add_trace(
            go.Scatter(x=pred_dates, y=mean_pred + 1.96 * std_pred,
                      fill=None, mode='lines', line_color='rgba(255,0,0,0.2)',
                      name='Upper Bound'),
            row=1, col=1
        )
        fig.add_trace(
            go.Scatter(x=pred_dates, y=mean_pred - 1.96 * std_pred,
                      fill='tonexty', mode='lines', line_color='rgba(255,0,0,0.2)',
                      name='Lower Bound'),
            row=1, col=1
        )
        
        # Add technical indicators
        fig.add_trace(
            go.Scatter(x=df.index, y=df['RSI'], name='RSI',
                      line=dict(color='purple')),
            row=2, col=1
        )
        fig.add_trace(
            go.Scatter(x=df.index, y=df['MACD'], name='MACD',
                      line=dict(color='orange')),
            row=2, col=1
        )
        fig.add_trace(
            go.Scatter(x=df.index, y=df['MACD_Signal'], name='MACD Signal',
                      line=dict(color='green')),
            row=2, col=1
        )
        
        # Add predicted technical indicators if available
        if rsi_pred is not None:
            fig.add_trace(
                go.Scatter(x=pred_dates, y=rsi_pred, name='Predicted RSI',
                          line=dict(color='purple', dash='dash')),
                row=2, col=1
            )
        
        if macd_pred is not None:
            fig.add_trace(
                go.Scatter(x=pred_dates, y=macd_pred, name='Predicted MACD',
                          line=dict(color='orange', dash='dash')),
                row=2, col=1
            )
        
        # Add volume
        fig.add_trace(
            go.Bar(x=df.index, y=df['Volume'], name='Volume',
                  marker_color='gray'),
            row=3, col=1
        )
        
        # Add predicted volume if available
        if volume_pred is not None:
            fig.add_trace(
                go.Bar(x=pred_dates, y=volume_pred, name='Predicted Volume',
                      marker_color='red', opacity=0.7),
                row=3, col=1
            )
        
        # Update layout with timeframe-specific settings
        fig.update_layout(
            title=f'{symbol} {timeframe} Analysis and Prediction',
            xaxis_title='Date',
            yaxis_title='Price',
            height=1000,
            showlegend=True
        )
        
        # Calculate trading signals
        signals = calculate_trading_signals(df)
        
        # Add prediction information to signals
        signals.update({
            "symbol": symbol,
            "timeframe": timeframe,
            "prediction": mean_pred.tolist(),
            "confidence": std_pred.tolist(),
            "dates": pred_dates.strftime('%Y-%m-%d %H:%M:%S').tolist(),
            "strategy_used": strategy
        })
        
        # Add predicted indicators to signals if available
        if volume_pred is not None:
            signals["predicted_volume"] = volume_pred.tolist()
        if rsi_pred is not None:
            signals["predicted_rsi"] = rsi_pred.tolist()
        if macd_pred is not None:
            signals["predicted_macd"] = macd_pred.tolist()
        
        # Implement advanced features
        # 1. Market Regime Detection
        if use_regime_detection:
            try:
                returns = df['Returns'].dropna()
                regime_info = detect_market_regime(returns)
                signals["regime_info"] = regime_info
            except Exception as e:
                print(f"Regime detection error: {str(e)}")
                signals["regime_info"] = {"error": str(e)}
        
        # 2. Advanced Trading Signals with Regime Awareness
        try:
            regime_info = signals.get("regime_info", {})
            advanced_signals = advanced_trading_signals(df, regime_info)
            signals["advanced_signals"] = advanced_signals
        except Exception as e:
            print(f"Advanced trading signals error: {str(e)}")
            signals["advanced_signals"] = {"error": str(e)}
        
        # 3. Stress Testing
        if use_stress_testing:
            try:
                stress_results = stress_test_scenarios(df, mean_pred)
                signals["stress_test_results"] = stress_results
            except Exception as e:
                print(f"Stress testing error: {str(e)}")
                signals["stress_test_results"] = {"error": str(e)}
        
        # 4. Ensemble Methods
        if use_ensemble and ensemble_weights:
            try:
                ensemble_mean, ensemble_uncertainty = create_ensemble_prediction(
                    df, prediction_days, ensemble_weights
                )
                if len(ensemble_mean) > 0:
                    signals["ensemble_used"] = True
                    signals["ensemble_prediction"] = ensemble_mean.tolist()
                    signals["ensemble_uncertainty"] = ensemble_uncertainty.tolist()
                    # Update the main prediction with ensemble if available
                    if len(ensemble_mean) == len(mean_pred):
                        mean_pred = ensemble_mean
                        std_pred = ensemble_uncertainty
                else:
                    signals["ensemble_used"] = False
            except Exception as e:
                print(f"Ensemble prediction error: {str(e)}")
                signals["ensemble_used"] = False
                signals["ensemble_error"] = str(e)
        
        # 5. Enhanced Uncertainty Quantification
        try:
            if 'quantiles' in locals():
                skewed_uncertainty = calculate_skewed_uncertainty(quantiles)
                signals["skewed_uncertainty"] = skewed_uncertainty.tolist()
        except Exception as e:
            print(f"Skewed uncertainty calculation error: {str(e)}")
        
        return signals, fig
        
    except Exception as e:
        raise Exception(f"Prediction error: {str(e)}")
    finally:
        clear_gpu_memory()

def calculate_trading_signals(df: pd.DataFrame) -> Dict:
    """Calculate trading signals based on technical indicators"""
    signals = {
        "RSI": "Oversold" if df['RSI'].iloc[-1] < 30 else "Overbought" if df['RSI'].iloc[-1] > 70 else "Neutral",
        "MACD": "Buy" if df['MACD'].iloc[-1] > df['MACD_Signal'].iloc[-1] else "Sell",
        "Bollinger": "Buy" if df['Close'].iloc[-1] < df['BB_Lower'].iloc[-1] else "Sell" if df['Close'].iloc[-1] > df['BB_Upper'].iloc[-1] else "Hold",
        "SMA": "Buy" if df['SMA_20'].iloc[-1] > df['SMA_50'].iloc[-1] else "Sell"
    }
    
    # Calculate overall signal
    buy_signals = sum(1 for signal in signals.values() if signal == "Buy")
    sell_signals = sum(1 for signal in signals.values() if signal == "Sell")
    
    if buy_signals > sell_signals:
        signals["Overall"] = "Buy"
    elif sell_signals > buy_signals:
        signals["Overall"] = "Sell"
    else:
        signals["Overall"] = "Hold"
    
    return signals

def get_market_data(symbol: str = "^GSPC", lookback_days: int = 365) -> pd.DataFrame:
    """
    Fetch market data (S&P 500 by default) for correlation analysis and regime detection.
    
    Args:
        symbol (str): Market index symbol (default: ^GSPC for S&P 500)
        lookback_days (int): Number of days to look back
    
    Returns:
        pd.DataFrame: Market data with returns
    """
    cache_key = f"{symbol}_{lookback_days}"
    current_time = time.time()
    
    # Check cache
    if cache_key in market_data_cache and current_time < cache_expiry.get(cache_key, 0):
        return market_data_cache[cache_key]
    
    try:
        ticker = yf.Ticker(symbol)
        end_date = datetime.now()
        start_date = end_date - timedelta(days=lookback_days)
        
        def fetch_market_history():
            return ticker.history(
                start=start_date,
                end=end_date,
                interval="1d",
                prepost=False,
                actions=False,
                auto_adjust=True
            )
        
        df = retry_yfinance_request(fetch_market_history)
        
        if not df.empty:
            df['Returns'] = df['Close'].pct_change()
            df['Volatility'] = df['Returns'].rolling(window=20).std()
            
            # Cache the data
            market_data_cache[cache_key] = df
            cache_expiry[cache_key] = current_time + CACHE_DURATION
            
        return df
    except Exception as e:
        print(f"Warning: Could not fetch market data for {symbol}: {str(e)}")
        return pd.DataFrame()

def detect_market_regime(returns: pd.Series, n_regimes: int = 3) -> Dict:
    """
    Detect market regime using Hidden Markov Model or simplified methods.
    
    Args:
        returns (pd.Series): Price returns
        n_regimes (int): Number of regimes to detect
    
    Returns:
        Dict: Regime information including probabilities and characteristics
    """
    def get_regime_name(regime_idx: int, means: List[float], volatilities: List[float]) -> str:
        """
        Convert regime index to descriptive name based on characteristics.
        
        Args:
            regime_idx (int): Regime index (0, 1, 2)
            means (List[float]): List of regime means
            volatilities (List[float]): List of regime volatilities
        
        Returns:
            str: Descriptive regime name
        """
        if len(means) != 3 or len(volatilities) != 3:
            return f"Regime {regime_idx}"
        
        # Sort regimes by volatility (low to high)
        vol_sorted = sorted(range(len(volatilities)), key=lambda i: volatilities[i])
        
        # Sort regimes by mean return (low to high)
        mean_sorted = sorted(range(len(means)), key=lambda i: means[i])
        
        # Determine regime characteristics
        if regime_idx == vol_sorted[0]:  # Lowest volatility
            if means[regime_idx] > 0:
                return "Low Volatility Bull"
            else:
                return "Low Volatility Bear"
        elif regime_idx == vol_sorted[2]:  # Highest volatility
            if means[regime_idx] > 0:
                return "High Volatility Bull"
            else:
                return "High Volatility Bear"
        else:  # Medium volatility
            if means[regime_idx] > 0:
                return "Moderate Bull"
            else:
                return "Moderate Bear"
    
    if len(returns) < 50:
        return {"regime": "Normal Market", "probabilities": [1.0], "volatility": returns.std()}
    
    try:
        if HMM_AVAILABLE:
            # Use HMM for regime detection
            # Convert pandas Series to numpy array for reshape
            returns_array = returns.dropna().values
            
            # Try different HMM configurations if convergence fails
            for attempt in range(3):
                try:
                    if attempt == 0:
                        model = hmm.GaussianHMM(n_components=n_regimes, random_state=42, covariance_type="full", n_iter=100)
                    elif attempt == 1:
                        model = hmm.GaussianHMM(n_components=n_regimes, random_state=42, covariance_type="diag", n_iter=200)
                    else:
                        model = hmm.GaussianHMM(n_components=n_regimes, random_state=42, covariance_type="spherical", n_iter=300)
                    
                    model.fit(returns_array.reshape(-1, 1))
                    
                    # Get regime probabilities for the last observation
                    regime_probs = model.predict_proba(returns_array.reshape(-1, 1))
                    current_regime = model.predict(returns_array.reshape(-1, 1))[-1]
                    
                    # Calculate regime characteristics
                    regime_means = model.means_.flatten()
                    regime_vols = np.sqrt(model.covars_.diagonal(axis1=1, axis2=2)) if model.covariance_type == "full" else np.sqrt(model.covars_)
                    
                    # Convert regime index to descriptive name
                    regime_name = get_regime_name(int(current_regime), regime_means.tolist(), regime_vols.tolist())
                    
                    return {
                        "regime": regime_name,
                        "regime_index": int(current_regime),
                        "probabilities": regime_probs[-1].tolist(),
                        "means": regime_means.tolist(),
                        "volatilities": regime_vols.tolist(),
                        "method": f"HMM-{model.covariance_type}"
                    }
                except Exception as e:
                    if attempt == 2:  # Last attempt failed
                        print(f"HMM failed after {attempt + 1} attempts: {str(e)}")
                        break
                    continue
        else:
            # Simplified regime detection using volatility clustering
            volatility = returns.rolling(window=20).std().dropna()
            vol_percentile = volatility.iloc[-1] / volatility.quantile(0.8)
            
            if vol_percentile > 1.2:
                regime_name = "High Volatility Market"
                regime = 2  # High volatility regime
            elif vol_percentile < 0.8:
                regime_name = "Low Volatility Market"
                regime = 0  # Low volatility regime
            else:
                regime_name = "Normal Market"
                regime = 1  # Normal regime
            
            return {
                "regime": regime_name,
                "regime_index": regime,
                "probabilities": [0.1, 0.8, 0.1] if regime == 1 else [0.8, 0.1, 0.1] if regime == 0 else [0.1, 0.1, 0.8],
                "volatility": volatility.iloc[-1],
                "method": "Volatility-based"
            }
    except Exception as e:
        print(f"Warning: Regime detection failed: {str(e)}")
        return {"regime": "Normal Market", "regime_index": 1, "probabilities": [1.0], "volatility": returns.std(), "method": "Fallback"}

def calculate_advanced_risk_metrics(df: pd.DataFrame, market_returns: pd.Series = None, 
                                  risk_free_rate: float = 0.02) -> Dict:
    """
    Calculate advanced risk metrics including tail risk and market correlation.
    
    Args:
        df (pd.DataFrame): Stock data
        market_returns (pd.Series): Market returns for correlation analysis
        risk_free_rate (float): Annual risk-free rate
    
    Returns:
        Dict: Advanced risk metrics
    """
    try:
        returns = df['Returns'].dropna()
        
        if len(returns) < 30:
            return {"error": "Insufficient data for risk calculation"}
        
        # Basic metrics
        annual_return = returns.mean() * 252
        annual_vol = returns.std() * np.sqrt(252)
        
        # Market-adjusted metrics
        beta = 1.0
        alpha = 0.0
        correlation = 0.0
        aligned_returns = None
        aligned_market = None
        
        if market_returns is not None and len(market_returns) > 0:
            try:
                # Align dates
                aligned_returns = returns.reindex(market_returns.index).dropna()
                aligned_market = market_returns.reindex(aligned_returns.index).dropna()
                
                # Ensure both arrays have the same length
                if len(aligned_returns) > 10 and len(aligned_market) > 10:
                    # Find the common length
                    min_length = min(len(aligned_returns), len(aligned_market))
                    aligned_returns = aligned_returns.iloc[-min_length:]
                    aligned_market = aligned_market.iloc[-min_length:]
                    
                    # Ensure they have the same length
                    if len(aligned_returns) == len(aligned_market) and len(aligned_returns) > 10:
                        try:
                            beta = np.cov(aligned_returns, aligned_market)[0,1] / np.var(aligned_market)
                            alpha = aligned_returns.mean() - beta * aligned_market.mean()
                            correlation = np.corrcoef(aligned_returns, aligned_market)[0,1]
                        except Exception as e:
                            print(f"Market correlation calculation error: {str(e)}")
                            beta = 1.0
                            alpha = 0.0
                            correlation = 0.0
                    else:
                        beta = 1.0
                        alpha = 0.0
                        correlation = 0.0
                else:
                    beta = 1.0
                    alpha = 0.0
                    correlation = 0.0
            except Exception as e:
                print(f"Market data alignment error: {str(e)}")
                beta = 1.0
                alpha = 0.0
                correlation = 0.0
                aligned_returns = None
                aligned_market = None
        
        # Tail risk metrics
        var_95 = np.percentile(returns, 5)
        var_99 = np.percentile(returns, 1)
        cvar_95 = returns[returns <= var_95].mean()
        cvar_99 = returns[returns <= var_99].mean()
        
        # Maximum drawdown
        cumulative_returns = (1 + returns).cumprod()
        rolling_max = cumulative_returns.expanding().max()
        drawdown = (cumulative_returns - rolling_max) / rolling_max
        max_drawdown = drawdown.min()
        
        # Skewness and kurtosis
        skewness = stats.skew(returns)
        kurtosis = stats.kurtosis(returns)
        
        # Risk-adjusted returns
        sharpe_ratio = (annual_return - risk_free_rate) / annual_vol if annual_vol > 0 else 0
        sortino_ratio = (annual_return - risk_free_rate) / (returns[returns < 0].std() * np.sqrt(252)) if returns[returns < 0].std() > 0 else 0
        calmar_ratio = annual_return / abs(max_drawdown) if max_drawdown != 0 else 0
        
        # Information ratio (if market data available)
        information_ratio = 0
        if aligned_returns is not None and aligned_market is not None:
            try:
                if len(aligned_returns) > 10 and len(aligned_market) > 10:
                    min_length = min(len(aligned_returns), len(aligned_market))
                    aligned_returns_for_ir = aligned_returns.iloc[-min_length:]
                    aligned_market_for_ir = aligned_market.iloc[-min_length:]
                    
                    if len(aligned_returns_for_ir) == len(aligned_market_for_ir):
                        excess_returns = aligned_returns_for_ir - aligned_market_for_ir
                        information_ratio = excess_returns.mean() / excess_returns.std() if excess_returns.std() > 0 else 0
                    else:
                        information_ratio = 0
                else:
                    information_ratio = 0
            except Exception as e:
                print(f"Information ratio calculation error: {str(e)}")
                information_ratio = 0
        
        return {
            "Annual_Return": annual_return,
            "Annual_Volatility": annual_vol,
            "Sharpe_Ratio": sharpe_ratio,
            "Sortino_Ratio": sortino_ratio,
            "Calmar_Ratio": calmar_ratio,
            "Information_Ratio": information_ratio,
            "Beta": beta,
            "Alpha": alpha * 252,
            "Correlation_with_Market": correlation,
            "VaR_95": var_95,
            "VaR_99": var_99,
            "CVaR_95": cvar_95,
            "CVaR_99": cvar_99,
            "Max_Drawdown": max_drawdown,
            "Skewness": skewness,
            "Kurtosis": kurtosis,
            "Risk_Free_Rate": risk_free_rate
        }
    except Exception as e:
        print(f"Advanced risk metrics calculation error: {str(e)}")
        return {"error": f"Risk calculation failed: {str(e)}"}

def create_ensemble_prediction(df: pd.DataFrame, prediction_days: int, 
                             ensemble_weights: Dict = None) -> Tuple[np.ndarray, np.ndarray]:
    """
    Create ensemble prediction combining multiple models.
    
    Args:
        df (pd.DataFrame): Historical data
        prediction_days (int): Number of days to predict
        ensemble_weights (Dict): Weights for different models
    
    Returns:
        Tuple[np.ndarray, np.ndarray]: Mean and uncertainty predictions
    """
    if ensemble_weights is None:
        ensemble_weights = {"chronos": 0.6, "technical": 0.2, "statistical": 0.2}
    
    predictions = {}
    uncertainties = {}
    
    # Chronos prediction (placeholder - will be filled by main prediction function)
    predictions["chronos"] = np.array([])
    uncertainties["chronos"] = np.array([])
    
    # Technical prediction
    if ensemble_weights.get("technical", 0) > 0:
        try:
            last_price = df['Close'].iloc[-1]
            rsi = df['RSI'].iloc[-1]
            macd = df['MACD'].iloc[-1]
            macd_signal = df['MACD_Signal'].iloc[-1]
            volatility = df['Volatility'].iloc[-1]
            
            # Enhanced technical prediction
            trend = 1 if (rsi > 50 and macd > macd_signal) else -1
            mean_reversion = (df['SMA_200'].iloc[-1] - last_price) / last_price if 'SMA_200' in df.columns else 0
            
            tech_pred = []
            for i in range(1, prediction_days + 1):
                # Combine trend and mean reversion
                prediction = last_price * (1 + trend * volatility * 0.3 + mean_reversion * 0.1 * i)
                tech_pred.append(prediction)
            
            predictions["technical"] = np.array(tech_pred)
            uncertainties["technical"] = np.array([volatility * last_price * i for i in range(1, prediction_days + 1)])
        except Exception as e:
            print(f"Technical prediction error: {str(e)}")
            predictions["technical"] = np.array([])
            uncertainties["technical"] = np.array([])
    
    # Statistical prediction (ARIMA-like)
    if ensemble_weights.get("statistical", 0) > 0:
        try:
            returns = df['Returns'].dropna()
            if len(returns) > 10:
                # Simple moving average with momentum
                ma_short = df['Close'].rolling(window=10).mean().iloc[-1]
                ma_long = df['Close'].rolling(window=30).mean().iloc[-1]
                momentum = (ma_short - ma_long) / ma_long
                
                last_price = df['Close'].iloc[-1]
                stat_pred = []
                for i in range(1, prediction_days + 1):
                    # Mean reversion with momentum
                    prediction = last_price * (1 + momentum * 0.5 - 0.001 * i)  # Decay factor
                    stat_pred.append(prediction)
                
                predictions["statistical"] = np.array(stat_pred)
                uncertainties["statistical"] = np.array([returns.std() * last_price * np.sqrt(i) for i in range(1, prediction_days + 1)])
            else:
                predictions["statistical"] = np.array([])
                uncertainties["statistical"] = np.array([])
        except Exception as e:
            print(f"Statistical prediction error: {str(e)}")
            predictions["statistical"] = np.array([])
            uncertainties["statistical"] = np.array([])
    
    # Combine predictions
    valid_predictions = {k: v for k, v in predictions.items() if len(v) > 0}
    valid_uncertainties = {k: v for k, v in uncertainties.items() if len(v) > 0}
    
    if not valid_predictions:
        return np.array([]), np.array([])
    
    # Weighted ensemble
    total_weight = sum(ensemble_weights.get(k, 0) for k in valid_predictions.keys())
    if total_weight == 0:
        return np.array([]), np.array([])
    
    # Normalize weights
    normalized_weights = {k: ensemble_weights.get(k, 0) / total_weight for k in valid_predictions.keys()}
    
    # Calculate weighted mean and uncertainty
    max_length = max(len(v) for v in valid_predictions.values())
    ensemble_mean = np.zeros(max_length)
    ensemble_uncertainty = np.zeros(max_length)
    
    for model, pred in valid_predictions.items():
        weight = normalized_weights[model]
        if len(pred) < max_length:
            # Extend prediction using last value
            extended_pred = np.concatenate([pred, np.full(max_length - len(pred), pred[-1])])
            extended_unc = np.concatenate([valid_uncertainties[model], np.full(max_length - len(pred), valid_uncertainties[model][-1])])
        else:
            extended_pred = pred[:max_length]
            extended_unc = valid_uncertainties[model][:max_length]
        
        ensemble_mean += weight * extended_pred
        ensemble_uncertainty += weight * extended_unc
    
    return ensemble_mean, ensemble_uncertainty

def stress_test_scenarios(df: pd.DataFrame, prediction: np.ndarray, 
                         scenarios: Dict = None) -> Dict:
    """
    Perform stress testing under various market scenarios.
    
    Args:
        df (pd.DataFrame): Historical data
        prediction (np.ndarray): Base prediction
        scenarios (Dict): Stress test scenarios
    
    Returns:
        Dict: Stress test results
    """
    if scenarios is None:
        scenarios = {
            "market_crash": {"volatility_multiplier": 3.0, "return_shock": -0.15},
            "high_volatility": {"volatility_multiplier": 2.0, "return_shock": -0.05},
            "low_volatility": {"volatility_multiplier": 0.5, "return_shock": 0.02},
            "bull_market": {"volatility_multiplier": 1.2, "return_shock": 0.10},
            "interest_rate_shock": {"volatility_multiplier": 1.5, "return_shock": -0.08}
        }
    
    base_volatility = df['Volatility'].iloc[-1]
    base_return = df['Returns'].mean()
    last_price = df['Close'].iloc[-1]
    
    stress_results = {}
    
    for scenario_name, params in scenarios.items():
        try:
            # Calculate stressed parameters
            stressed_vol = base_volatility * params["volatility_multiplier"]
            stressed_return = base_return + params["return_shock"]
            
            # Generate stressed prediction
            stressed_pred = []
            for i, pred in enumerate(prediction):
                # Apply stress factors
                stress_factor = 1 + stressed_return * (i + 1) / 252
                volatility_impact = np.random.normal(0, stressed_vol * np.sqrt((i + 1) / 252))
                stressed_price = pred * stress_factor * (1 + volatility_impact)
                stressed_pred.append(stressed_price)
            
            # Calculate stress metrics
            stress_results[scenario_name] = {
                "prediction": np.array(stressed_pred),
                "max_loss": min(stressed_pred) / last_price - 1,
                "volatility": stressed_vol,
                "expected_return": stressed_return,
                "var_95": np.percentile([p / last_price - 1 for p in stressed_pred], 5)
            }
        except Exception as e:
            print(f"Stress test error for {scenario_name}: {str(e)}")
            stress_results[scenario_name] = {"error": str(e)}
    
    return stress_results

def calculate_skewed_uncertainty(quantiles: np.ndarray, confidence_level: float = 0.9) -> np.ndarray:
    """
    Calculate uncertainty accounting for skewness in return distributions.
    
    Args:
        quantiles (np.ndarray): Quantile predictions from Chronos
        confidence_level (float): Confidence level for uncertainty calculation
    
    Returns:
        np.ndarray: Uncertainty estimates
    """
    try:
        lower = quantiles[0, :, 0]
        median = quantiles[0, :, 1]
        upper = quantiles[0, :, 2]
        
        # Calculate skewness for each prediction point
        uncertainties = []
        for i in range(len(lower)):
            # Calculate skewness
            if upper[i] != median[i] and median[i] != lower[i]:
                skewness = (median[i] - lower[i]) / (upper[i] - median[i])
            else:
                skewness = 1.0
            
            # Adjust z-score based on skewness
            if skewness > 1.2:  # Right-skewed
                z_score = stats.norm.ppf(confidence_level) * (1 + 0.1 * skewness)
            elif skewness < 0.8:  # Left-skewed
                z_score = stats.norm.ppf(confidence_level) * (1 - 0.1 * abs(skewness))
            else:
                z_score = stats.norm.ppf(confidence_level)
            
            # Calculate uncertainty
            uncertainty = (upper[i] - lower[i]) / (2 * z_score)
            uncertainties.append(uncertainty)
        
        return np.array(uncertainties)
    except Exception as e:
        print(f"Skewed uncertainty calculation error: {str(e)}")
        # Fallback to simple calculation
        return (quantiles[0, :, 2] - quantiles[0, :, 0]) / (2 * 1.645)

def adaptive_smoothing(new_pred: np.ndarray, historical_pred: np.ndarray, 
                      prediction_uncertainty: np.ndarray) -> np.ndarray:
    """
    Apply adaptive smoothing based on prediction uncertainty.
    
    Args:
        new_pred (np.ndarray): New predictions
        historical_pred (np.ndarray): Historical predictions
        prediction_uncertainty (np.ndarray): Prediction uncertainty
    
    Returns:
        np.ndarray: Smoothed predictions
    """
    try:
        if len(historical_pred) == 0:
            return new_pred
        
        # Calculate adaptive alpha based on uncertainty
        uncertainty_ratio = prediction_uncertainty / np.mean(np.abs(historical_pred))
        
        if uncertainty_ratio > 0.1:  # High uncertainty
            alpha = 0.1  # More smoothing
        elif uncertainty_ratio < 0.05:  # Low uncertainty
            alpha = 0.5  # Less smoothing
        else:
            alpha = 0.3  # Default
        
        # Apply weighted smoothing
        smoothed = alpha * new_pred + (1 - alpha) * historical_pred[-len(new_pred):]
        return smoothed
    except Exception as e:
        print(f"Adaptive smoothing error: {str(e)}")
        return new_pred

def advanced_trading_signals(df: pd.DataFrame, regime_info: Dict = None) -> Dict:
    """
    Generate advanced trading signals with confidence levels and regime awareness.
    
    Args:
        df (pd.DataFrame): Stock data
        regime_info (Dict): Market regime information
    
    Returns:
        Dict: Advanced trading signals
    """
    try:
        # Calculate signal strength and confidence
        rsi = df['RSI'].iloc[-1]
        macd = df['MACD'].iloc[-1]
        macd_signal = df['MACD_Signal'].iloc[-1]
        
        rsi_strength = abs(rsi - 50) / 50  # 0-1 scale
        macd_strength = abs(macd - macd_signal) / df['Close'].iloc[-1]
        
        # Regime-adjusted thresholds
        if regime_info and "volatilities" in regime_info:
            volatility_regime = df['Volatility'].iloc[-1] / np.mean(regime_info["volatilities"])
        else:
            volatility_regime = 1.0
        
        # Adjust RSI thresholds based on volatility
        rsi_oversold = 30 + (volatility_regime - 1) * 10
        rsi_overbought = 70 - (volatility_regime - 1) * 10
        
        # Calculate signals with confidence
        signals = {}
        
        # RSI signal
        if rsi < rsi_oversold:
            rsi_signal = "Oversold"
            rsi_confidence = min(0.9, 0.5 + rsi_strength * 0.4)
        elif rsi > rsi_overbought:
            rsi_signal = "Overbought"
            rsi_confidence = min(0.9, 0.5 + rsi_strength * 0.4)
        else:
            rsi_signal = "Neutral"
            rsi_confidence = 0.3
        
        signals["RSI"] = {
            "signal": rsi_signal,
            "strength": rsi_strength,
            "confidence": rsi_confidence,
            "value": rsi
        }
        
        # MACD signal
        if macd > macd_signal:
            macd_signal = "Buy"
            macd_confidence = min(0.8, 0.4 + macd_strength * 40)
        else:
            macd_signal = "Sell"
            macd_confidence = min(0.8, 0.4 + macd_strength * 40)
        
        signals["MACD"] = {
            "signal": macd_signal,
            "strength": macd_strength,
            "confidence": macd_confidence,
            "value": macd
        }
        
        # Bollinger Bands signal
        if 'BB_Upper' in df.columns and 'BB_Lower' in df.columns:
            current_price = df['Close'].iloc[-1]
            bb_upper = df['BB_Upper'].iloc[-1]
            bb_lower = df['BB_Lower'].iloc[-1]
            
            # Calculate position within Bollinger Bands (0-1 scale)
            bb_position = (current_price - bb_lower) / (bb_upper - bb_lower) if bb_upper != bb_lower else 0.5
            bb_strength = abs(bb_position - 0.5) * 2  # 0-1 scale, strongest at edges
            
            if current_price < bb_lower:
                bb_signal = "Buy"
                bb_confidence = 0.7
            elif current_price > bb_upper:
                bb_signal = "Sell"
                bb_confidence = 0.7
            else:
                bb_signal = "Hold"
                bb_confidence = 0.5
            
            signals["Bollinger"] = {
                "signal": bb_signal,
                "strength": bb_strength,
                "confidence": bb_confidence,
                "position": bb_position
            }
        
        # SMA signal
        if 'SMA_20' in df.columns and 'SMA_50' in df.columns:
            sma_20 = df['SMA_20'].iloc[-1]
            sma_50 = df['SMA_50'].iloc[-1]
            
            # Calculate SMA strength based on ratio
            sma_ratio = sma_20 / sma_50 if sma_50 != 0 else 1.0
            sma_strength = abs(sma_ratio - 1.0)  # 0-1 scale, strongest when ratio differs most from 1
            
            if sma_20 > sma_50:
                sma_signal = "Buy"
                sma_confidence = 0.6
            else:
                sma_signal = "Sell"
                sma_confidence = 0.6
            
            signals["SMA"] = {
                "signal": sma_signal,
                "strength": sma_strength,
                "confidence": sma_confidence,
                "ratio": sma_ratio
            }
        
        # Calculate weighted overall signal
        buy_signals = []
        sell_signals = []
        
        for signal_name, signal_data in signals.items():
            # Get strength with default value if not present
            strength = signal_data.get("strength", 0.5)  # Default strength of 0.5
            confidence = signal_data.get("confidence", 0.5)  # Default confidence of 0.5
            
            if signal_data["signal"] == "Buy":
                buy_signals.append(strength * confidence)
            elif signal_data["signal"] == "Sell":
                sell_signals.append(strength * confidence)
        
        weighted_buy = sum(buy_signals) if buy_signals else 0
        weighted_sell = sum(sell_signals) if sell_signals else 0
        
        if weighted_buy > weighted_sell:
            overall_signal = "Buy"
            overall_confidence = weighted_buy / (weighted_buy + weighted_sell) if (weighted_buy + weighted_sell) > 0 else 0
        elif weighted_sell > weighted_buy:
            overall_signal = "Sell"
            overall_confidence = weighted_sell / (weighted_buy + weighted_sell) if (weighted_buy + weighted_sell) > 0 else 0
        else:
            overall_signal = "Hold"
            overall_confidence = 0.5
        
        return {
            "signals": signals,
            "overall_signal": overall_signal,
            "confidence": overall_confidence,
            "regime_adjusted": regime_info is not None
        }
    
    except Exception as e:
        print(f"Advanced trading signals error: {str(e)}")
        return {"error": str(e)}

def apply_financial_smoothing(data: np.ndarray, smoothing_type: str = "exponential", 
                            window_size: int = 5, alpha: float = 0.3, 
                            poly_order: int = 3, use_smoothing: bool = True) -> np.ndarray:
    """
    Apply financial smoothing algorithms to time series data.
    
    Args:
        data (np.ndarray): Input time series data
        smoothing_type (str): Type of smoothing to apply
            - 'exponential': Exponential moving average (good for trend following)
            - 'moving_average': Simple moving average (good for noise reduction)
            - 'kalman': Kalman filter (good for adaptive smoothing)
            - 'savitzky_golay': Savitzky-Golay filter (good for preserving peaks/valleys)
            - 'double_exponential': Double exponential smoothing (good for trend + seasonality)
            - 'triple_exponential': Triple exponential smoothing (Holt-Winters, good for complex patterns)
            - 'adaptive': Adaptive smoothing based on volatility
            - 'none': No smoothing applied
        window_size (int): Window size for moving average and Savitzky-Golay
        alpha (float): Smoothing factor for exponential methods (0-1)
        poly_order (int): Polynomial order for Savitzky-Golay filter
        use_smoothing (bool): Whether to apply smoothing
    
    Returns:
        np.ndarray: Smoothed data
    """
    if not use_smoothing or smoothing_type == "none" or len(data) < 3:
        return data
    
    try:
        if smoothing_type == "exponential":
            # Exponential Moving Average - good for trend following
            smoothed = np.zeros_like(data)
            smoothed[0] = data[0]
            for i in range(1, len(data)):
                smoothed[i] = alpha * data[i] + (1 - alpha) * smoothed[i-1]
            return smoothed
        
        elif smoothing_type == "moving_average":
            # Simple Moving Average - good for noise reduction
            if len(data) < window_size:
                return data
            
            smoothed = np.zeros_like(data)
            # Handle the beginning of the series
            for i in range(min(window_size - 1, len(data))):
                smoothed[i] = np.mean(data[:i+1])
            
            # Apply moving average for the rest
            for i in range(window_size - 1, len(data)):
                smoothed[i] = np.mean(data[i-window_size+1:i+1])
            return smoothed
        
        elif smoothing_type == "kalman":
            # Kalman Filter - adaptive smoothing
            if len(data) < 2:
                return data
            
            # Initialize Kalman filter parameters
            Q = 0.01  # Process noise
            R = 0.1   # Measurement noise
            P = 1.0   # Initial estimate error
            x = data[0]  # Initial state estimate
            
            smoothed = np.zeros_like(data)
            smoothed[0] = x
            
            for i in range(1, len(data)):
                # Prediction step
                x_pred = x
                P_pred = P + Q
                
                # Update step
                K = P_pred / (P_pred + R)  # Kalman gain
                x = x_pred + K * (data[i] - x_pred)
                P = (1 - K) * P_pred
                
                smoothed[i] = x
            
            return smoothed
        
        elif smoothing_type == "savitzky_golay":
            # Savitzky-Golay filter - preserves peaks and valleys
            if len(data) < window_size:
                return data
            
            # Ensure window_size is odd
            if window_size % 2 == 0:
                window_size += 1
            
            # Ensure polynomial order is less than window_size
            if poly_order >= window_size:
                poly_order = window_size - 1
            
            try:
                from scipy.signal import savgol_filter
                return savgol_filter(data, window_size, poly_order)
            except ImportError:
                # Fallback to simple moving average if scipy not available
                return apply_financial_smoothing(data, "moving_average", window_size)
        
        elif smoothing_type == "double_exponential":
            # Double Exponential Smoothing (Holt's method) - trend + level
            if len(data) < 3:
                return data
            
            smoothed = np.zeros_like(data)
            trend = np.zeros_like(data)
            
            # Initialize
            smoothed[0] = data[0]
            trend[0] = data[1] - data[0] if len(data) > 1 else 0
            
            # Apply double exponential smoothing
            for i in range(1, len(data)):
                prev_smoothed = smoothed[i-1]
                prev_trend = trend[i-1]
                
                smoothed[i] = alpha * data[i] + (1 - alpha) * (prev_smoothed + prev_trend)
                trend[i] = alpha * (smoothed[i] - prev_smoothed) + (1 - alpha) * prev_trend
            
            return smoothed
        
        elif smoothing_type == "triple_exponential":
            # Triple Exponential Smoothing (Holt-Winters) - trend + level + seasonality
            if len(data) < 6:
                return apply_financial_smoothing(data, "double_exponential", window_size, alpha)
            
            # For simplicity, we'll use a seasonal period of 5 (common for financial data)
            season_period = min(5, len(data) // 2)
            
            smoothed = np.zeros_like(data)
            trend = np.zeros_like(data)
            season = np.zeros_like(data)
            
            # Initialize
            smoothed[0] = data[0]
            trend[0] = (data[season_period] - data[0]) / season_period if len(data) > season_period else 0
            
            # Initialize seasonal components
            for i in range(season_period):
                season[i] = data[i] - smoothed[0]
            
            # Apply triple exponential smoothing
            for i in range(1, len(data)):
                prev_smoothed = smoothed[i-1]
                prev_trend = trend[i-1]
                prev_season = season[(i-1) % season_period]
                
                smoothed[i] = alpha * (data[i] - prev_season) + (1 - alpha) * (prev_smoothed + prev_trend)
                trend[i] = alpha * (smoothed[i] - prev_smoothed) + (1 - alpha) * prev_trend
                season[i % season_period] = alpha * (data[i] - smoothed[i]) + (1 - alpha) * prev_season
            
            return smoothed
        
        elif smoothing_type == "adaptive":
            # Adaptive smoothing based on volatility
            if len(data) < 5:
                return data
            
            # Calculate rolling volatility
            returns = np.diff(data) / data[:-1]
            volatility = np.zeros_like(data)
            volatility[0] = np.std(returns) if len(returns) > 0 else 0.01
            
            for i in range(1, len(data)):
                if i < 5:
                    volatility[i] = np.std(returns[:i]) if i > 0 else 0.01
                else:
                    volatility[i] = np.std(returns[i-5:i])
            
            # Normalize volatility to smoothing factor
            vol_factor = np.clip(volatility / np.mean(volatility), 0.1, 0.9)
            adaptive_alpha = 1 - vol_factor  # Higher volatility = less smoothing
            
            # Apply adaptive exponential smoothing
            smoothed = np.zeros_like(data)
            smoothed[0] = data[0]
            
            for i in range(1, len(data)):
                current_alpha = adaptive_alpha[i]
                smoothed[i] = current_alpha * data[i] + (1 - current_alpha) * smoothed[i-1]
            
            return smoothed
        
        else:
            # Default to exponential smoothing
            return apply_financial_smoothing(data, "exponential", window_size, alpha)
    
    except Exception as e:
        print(f"Smoothing error: {str(e)}")
        return data

def create_interface():
    """Create the Gradio interface with separate tabs for different timeframes"""
    with gr.Blocks(title="Advanced Stock Prediction Analysis") as demo:
        gr.Markdown("# Advanced Stock Prediction Analysis")
        gr.Markdown("Analyze stocks with advanced features including regime detection, ensemble methods, and stress testing.")
        
        # Add market status message
        market_status = "Market is currently closed" if not is_market_open() else "Market is currently open"
        next_trading_day = get_next_trading_day()
        gr.Markdown(f"""
        ### Market Status: {market_status}
        Next trading day: {next_trading_day.strftime('%Y-%m-%d')}
        """)
        
        # Advanced Settings Accordion
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                with gr.Column():
                    use_ensemble = gr.Checkbox(label="Use Ensemble Methods", value=True)
                    use_regime_detection = gr.Checkbox(label="Use Regime Detection", value=True)
                    use_stress_testing = gr.Checkbox(label="Use Stress Testing", value=True)
                    use_smoothing = gr.Checkbox(label="Use Smoothing", value=True)
                    smoothing_type = gr.Dropdown(
                        choices=["exponential", "moving_average", "kalman", "savitzky_golay", 
                                "double_exponential", "triple_exponential", "adaptive", "none"],
                        label="Smoothing Type",
                        value="exponential",
                        info="""Smoothing algorithms:
                        • Exponential: Trend following (default)
                        • Moving Average: Noise reduction
                        • Kalman: Adaptive smoothing
                        • Savitzky-Golay: Preserves peaks/valleys
                        • Double Exponential: Trend + level
                        • Triple Exponential: Complex patterns
                        • Adaptive: Volatility-based
                        • None: No smoothing"""
                    )
                    smoothing_window = gr.Slider(
                        minimum=3,
                        maximum=21,
                        value=5,
                        step=1,
                        label="Smoothing Window Size",
                        info="Window size for moving average and Savitzky-Golay filters"
                    )
                    smoothing_alpha = gr.Slider(
                        minimum=0.1,
                        maximum=0.9,
                        value=0.3,
                        step=0.05,
                        label="Smoothing Alpha",
                        info="Smoothing factor for exponential methods (0.1-0.9)"
                    )
                    risk_free_rate = gr.Slider(
                        minimum=0.0,
                        maximum=0.1,
                        value=0.02,
                        step=0.001,
                        label="Risk-Free Rate (Annual)"
                    )
                    market_index = gr.Dropdown(
                        choices=["^GSPC", "^DJI", "^IXIC", "^RUT"],
                        label="Market Index for Correlation",
                        value="^GSPC"
                    )
                    random_real_points = gr.Slider(
                        minimum=0,
                        maximum=16,
                        value=4,
                        step=1,
                        label="Random Real Points in Long-Horizon Context"
                    )
                
                with gr.Column():
                    gr.Markdown("### Ensemble Weights")
                    chronos_weight = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.6,
                        step=0.1,
                        label="Chronos Weight"
                    )
                    technical_weight = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.2,
                        step=0.1,
                        label="Technical Weight"
                    )
                    statistical_weight = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.2,
                        step=0.1,
                        label="Statistical Weight"
                    )
        
        with gr.Tabs() as tabs:
            # Daily Analysis Tab
            with gr.TabItem("Daily Analysis"):
                with gr.Row():
                    with gr.Column():
                        daily_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
                        daily_prediction_days = gr.Slider(
                            minimum=1,
                            maximum=365,
                            value=30,
                            step=1,
                            label="Days to Predict"
                        )
                        daily_lookback_days = gr.Slider(
                            minimum=1,
                            maximum=3650,
                            value=365,
                            step=1,
                            label="Historical Lookback (Days)"
                        )
                        daily_strategy = gr.Dropdown(
                            choices=["chronos", "technical"],
                            label="Prediction Strategy",
                            value="chronos"
                        )
                        daily_predict_btn = gr.Button("Analyze Stock")
                        gr.Markdown("""
                        **Daily Analysis Features:**
                        - **Extended Data Range**: Up to 10 years of historical data (3650 days)
                        - **24/7 Availability**: Available regardless of market hours
                        - **Auto-Adjusted Data**: Automatically adjusted for splits and dividends
                        - **Comprehensive Financial Ratios**: P/E, PEG, Price-to-Book, Price-to-Sales, and more
                        - **Advanced Risk Metrics**: Sharpe ratio, VaR, drawdown analysis, market correlation
                        - **Market Regime Detection**: Identifies bull/bear/sideways market conditions
                        - **Stress Testing**: Scenario analysis under various market conditions
                        - **Ensemble Methods**: Combines multiple prediction models for improved accuracy
                        - **Maximum prediction period**: 365 days
                        - **Ideal for**: Medium to long-term investment analysis, portfolio management, and strategic planning
                        - **Technical Indicators**: RSI, MACD, Bollinger Bands, moving averages optimized for daily data
                        - **Volume Analysis**: Average daily volume, volume volatility, and liquidity metrics
                        - **Sector Analysis**: Industry classification, market cap ranking, and sector-specific metrics
                        """)
                    
                    with gr.Column():
                        daily_plot = gr.Plot(label="Analysis and Prediction")
                
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("### Structured Product Metrics")
                        daily_metrics = gr.JSON(label="Product Metrics")
                        
                        gr.Markdown("### Advanced Risk Analysis")
                        daily_risk_metrics = gr.JSON(label="Risk Metrics")
                        
                        gr.Markdown("### Market Regime Analysis")
                        daily_regime_metrics = gr.JSON(label="Regime Metrics")
                        
                        gr.Markdown("### Trading Signals")
                        daily_signals = gr.JSON(label="Trading Signals")
                        
                        gr.Markdown("### Advanced Trading Signals")
                        daily_signals_advanced = gr.JSON(label="Advanced Trading Signals")
                    
                    with gr.Column():
                        gr.Markdown("### Sector & Financial Analysis")
                        daily_sector_metrics = gr.JSON(label="Sector Metrics")
                        
                        gr.Markdown("### Stress Test Results")
                        daily_stress_results = gr.JSON(label="Stress Test Results")
                        
                        gr.Markdown("### Ensemble Analysis")
                        daily_ensemble_metrics = gr.JSON(label="Ensemble Metrics")
            
            # Hourly Analysis Tab
            with gr.TabItem("Hourly Analysis"):
                with gr.Row():
                    with gr.Column():
                        hourly_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
                        hourly_prediction_days = gr.Slider(
                            minimum=1,
                            maximum=7,  # Limited to 7 days for hourly predictions
                            value=3,
                            step=1,
                            label="Days to Predict"
                        )
                        hourly_lookback_days = gr.Slider(
                            minimum=1,
                            maximum=60,  # Enhanced to 60 days for hourly data
                            value=14,
                            step=1,
                            label="Historical Lookback (Days)"
                        )
                        hourly_strategy = gr.Dropdown(
                            choices=["chronos", "technical"],
                            label="Prediction Strategy",
                            value="chronos"
                        )
                        hourly_predict_btn = gr.Button("Analyze Stock")
                        gr.Markdown("""
                        **Hourly Analysis Features:**
                        - **Extended Data Range**: Up to 60 days of historical data
                        - **Pre/Post Market Data**: Includes extended hours trading data
                        - **Auto-Adjusted Data**: Automatically adjusted for splits and dividends
                        - **Metrics**: Intraday volatility, volume analysis, and momentum indicators
                        - **Comprehensive Financial Ratios**: P/E, PEG, Price-to-Book, and more
                        - **Maximum prediction period**: 7 days
                        - **Data available during market hours only**
                        """)
                    
                    with gr.Column():
                        hourly_plot = gr.Plot(label="Analysis and Prediction")
                        hourly_signals = gr.JSON(label="Trading Signals")
                
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("### Structured Product Metrics")
                        hourly_metrics = gr.JSON(label="Product Metrics")
                        
                        gr.Markdown("### Advanced Risk Analysis")
                        hourly_risk_metrics = gr.JSON(label="Risk Metrics")
                        
                        gr.Markdown("### Market Regime Analysis")
                        hourly_regime_metrics = gr.JSON(label="Regime Metrics")
                        
                        gr.Markdown("### Trading Signals")
                        hourly_signals_advanced = gr.JSON(label="Advanced Trading Signals")
                    
                    with gr.Column():
                        gr.Markdown("### Sector & Financial Analysis")
                        hourly_sector_metrics = gr.JSON(label="Sector Metrics")
                        
                        gr.Markdown("### Stress Test Results")
                        hourly_stress_results = gr.JSON(label="Stress Test Results")
                        
                        gr.Markdown("### Ensemble Analysis")
                        hourly_ensemble_metrics = gr.JSON(label="Ensemble Metrics")
            
            # 15-Minute Analysis Tab
            with gr.TabItem("15-Minute Analysis"):
                with gr.Row():
                    with gr.Column():
                        min15_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
                        min15_prediction_days = gr.Slider(
                            minimum=1,
                            maximum=2,  # Limited to 2 days for 15-minute predictions
                            value=1,
                            step=1,
                            label="Days to Predict"
                        )
                        min15_lookback_days = gr.Slider(
                            minimum=1,
                            maximum=7,  # 7 days for 15-minute data
                            value=3,
                            step=1,
                            label="Historical Lookback (Days)"
                        )
                        min15_strategy = gr.Dropdown(
                            choices=["chronos", "technical"],
                            label="Prediction Strategy",
                            value="chronos"
                        )
                        min15_predict_btn = gr.Button("Analyze Stock")
                        gr.Markdown("""
                        **15-Minute Analysis Features:**
                        - **Data Range**: Up to 7 days of historical data (vs 5 days previously)
                        - **High-Frequency Metrics**: Intraday volatility, volume-price trends, momentum analysis
                        - **Pre/Post Market Data**: Includes extended hours trading data
                        - **Auto-Adjusted Data**: Automatically adjusted for splits and dividends
                        - **Enhanced Technical Indicators**: Optimized for short-term trading
                        - **Maximum prediction period**: 2 days
                        - **Requires at least 64 data points for Chronos predictions**
                        - **Data available during market hours only**
                        """)
                    
                    with gr.Column():
                        min15_plot = gr.Plot(label="Analysis and Prediction")
                        min15_signals = gr.JSON(label="Trading Signals")
                
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("### Structured Product Metrics")
                        min15_metrics = gr.JSON(label="Product Metrics")
                        
                        gr.Markdown("### Advanced Risk Analysis")
                        min15_risk_metrics = gr.JSON(label="Risk Metrics")
                        
                        gr.Markdown("### Market Regime Analysis")
                        min15_regime_metrics = gr.JSON(label="Regime Metrics")
                        
                        gr.Markdown("### Trading Signals")
                        min15_signals_advanced = gr.JSON(label="Advanced Trading Signals")
                    
                    with gr.Column():
                        gr.Markdown("### Sector & Financial Analysis")
                        min15_sector_metrics = gr.JSON(label="Sector Metrics")
                        
                        gr.Markdown("### Stress Test Results")
                        min15_stress_results = gr.JSON(label="Stress Test Results")
                        
                        gr.Markdown("### Ensemble Analysis")
                        min15_ensemble_metrics = gr.JSON(label="Ensemble Metrics")
        
        def analyze_stock(symbol, timeframe, prediction_days, lookback_days, strategy,
                         use_ensemble, use_regime_detection, use_stress_testing,
                         risk_free_rate, market_index, chronos_weight, technical_weight, statistical_weight,
                         random_real_points, use_smoothing, smoothing_type, smoothing_window, smoothing_alpha):
            try:
                # Create ensemble weights
                ensemble_weights = {
                    "chronos": chronos_weight,
                    "technical": technical_weight,
                    "statistical": statistical_weight
                }
                
                # Get market data for correlation analysis
                market_df = get_market_data(market_index, lookback_days)
                market_returns = market_df['Returns'] if not market_df.empty else None
                
                # Make prediction with advanced features
                signals, fig = make_prediction(
                    symbol=symbol,
                    timeframe=timeframe,
                    prediction_days=prediction_days,
                    strategy=strategy,
                    use_ensemble=use_ensemble,
                    use_regime_detection=use_regime_detection,
                    use_stress_testing=use_stress_testing,
                    risk_free_rate=risk_free_rate,
                    ensemble_weights=ensemble_weights,
                    market_index=market_index,
                    random_real_points=random_real_points,
                    use_smoothing=use_smoothing,
                    smoothing_type=smoothing_type,
                    smoothing_window=smoothing_window,
                    smoothing_alpha=smoothing_alpha
                )
                
                # Get historical data for additional metrics
                df = get_historical_data(symbol, timeframe, lookback_days)
                
                # Calculate structured product metrics
                product_metrics = {
                    "Market_Cap": df['Market_Cap'].iloc[-1],
                    "Sector": df['Sector'].iloc[-1],
                    "Industry": df['Industry'].iloc[-1],
                    "Dividend_Yield": df['Dividend_Yield'].iloc[-1],
                    "Avg_Daily_Volume": df['Avg_Daily_Volume'].iloc[-1],
                    "Volume_Volatility": df['Volume_Volatility'].iloc[-1],
                    "Enterprise_Value": df['Enterprise_Value'].iloc[-1],
                    "P/E_Ratio": df['P/E_Ratio'].iloc[-1],
                    "Forward_P/E": df['Forward_P/E'].iloc[-1],
                    "PEG_Ratio": df['PEG_Ratio'].iloc[-1],
                    "Price_to_Book": df['Price_to_Book'].iloc[-1],
                    "Price_to_Sales": df['Price_to_Sales'].iloc[-1]
                }
                
                # Calculate advanced risk metrics
                risk_metrics = calculate_advanced_risk_metrics(df, market_returns, risk_free_rate)
                
                # Calculate sector metrics
                sector_metrics = {
                    "Sector": df['Sector'].iloc[-1],
                    "Industry": df['Industry'].iloc[-1],
                    "Market_Cap_Rank": "Large" if df['Market_Cap'].iloc[-1] > 1e10 else "Mid" if df['Market_Cap'].iloc[-1] > 1e9 else "Small",
                    "Liquidity_Score": "High" if df['Avg_Daily_Volume'].iloc[-1] > 1e6 else "Medium" if df['Avg_Daily_Volume'].iloc[-1] > 1e5 else "Low",
                    "Gross_Margin": df['Gross_Margin'].iloc[-1],
                    "Operating_Margin": df['Operating_Margin'].iloc[-1],
                    "Net_Margin": df['Net_Margin'].iloc[-1]
                }
                
                # Add intraday-specific metrics for shorter timeframes
                if timeframe in ["1h", "15m"]:
                    intraday_metrics = {
                        "Intraday_Volatility": df['Intraday_Volatility'].iloc[-1] if 'Intraday_Volatility' in df.columns else 0,
                        "Volume_Ratio": df['Volume_Ratio'].iloc[-1] if 'Volume_Ratio' in df.columns else 0,
                        "Price_Momentum": df['Price_Momentum'].iloc[-1] if 'Price_Momentum' in df.columns else 0,
                        "Volume_Momentum": df['Volume_Momentum'].iloc[-1] if 'Volume_Momentum' in df.columns else 0,
                        "Volume_Price_Trend": df['Volume_Price_Trend'].iloc[-1] if 'Volume_Price_Trend' in df.columns else 0
                    }
                    product_metrics.update(intraday_metrics)
                
                # Extract regime and stress test information
                regime_metrics = signals.get("regime_info", {})
                stress_results = signals.get("stress_test_results", {})
                ensemble_metrics = {
                    "ensemble_used": signals.get("ensemble_used", False),
                    "ensemble_weights": ensemble_weights
                }
                
                # Separate basic and advanced signals
                basic_signals = {
                    "RSI": signals.get("RSI", "Neutral"),
                    "MACD": signals.get("MACD", "Hold"),
                    "Bollinger": signals.get("Bollinger", "Hold"),
                    "SMA": signals.get("SMA", "Hold"),
                    "Overall": signals.get("Overall", "Hold"),
                    "symbol": signals.get("symbol", symbol),
                    "timeframe": signals.get("timeframe", timeframe),
                    "strategy_used": signals.get("strategy_used", strategy)
                }
                
                advanced_signals = signals.get("advanced_signals", {})
                
                return basic_signals, fig, product_metrics, risk_metrics, sector_metrics, regime_metrics, stress_results, ensemble_metrics, advanced_signals
            except Exception as e:
                error_message = str(e)
                if "Market is currently closed" in error_message:
                    error_message = f"{error_message}. Please try again during market hours or use daily timeframe."
                elif "Insufficient data points" in error_message:
                    error_message = f"Not enough data available for {symbol} in {timeframe} timeframe. Please try a different timeframe or symbol."
                elif "no price data found" in error_message:
                    error_message = f"No data available for {symbol} in {timeframe} timeframe. Please try a different timeframe or symbol."
                raise gr.Error(error_message)
        
        # Daily analysis button click
        def daily_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
                          rfr: float, mi: str, cw: float, tw: float, sw: float,
                          rrp: int, usm: bool, smt: str, sww: float, sa: float) -> Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]:
            """
            Process daily timeframe stock analysis with advanced features.

            This function performs comprehensive stock analysis using daily data with support for
            multiple prediction strategies, ensemble methods, regime detection, and stress testing.
            It's designed for medium to long-term investment analysis with up to 365 days of prediction.

            Args:
                s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL", "TSLA")
                    Must be a valid stock symbol available on Yahoo Finance
                pd (int): Number of days to predict (1-365)
                    The forecast horizon for the analysis. Longer periods may have higher uncertainty
                ld (int): Historical lookback period in days (1-3650)
                    Amount of historical data to use for analysis. More data generally improves accuracy
                st (str): Prediction strategy to use ("chronos" or "technical")
                    - "chronos": Uses Amazon's Chronos T5 model for time series forecasting
                    - "technical": Uses traditional technical analysis indicators
                ue (bool): Use ensemble methods
                    When True, combines multiple prediction models for improved accuracy
                urd (bool): Use regime detection
                    When True, detects market regimes (bull/bear/sideways) to adjust predictions
                ust (bool): Use stress testing
                    When True, performs scenario analysis under various market conditions
                rfr (float): Risk-free rate (0.0-0.1)
                    Annual risk-free rate used for risk-adjusted return calculations
                mi (str): Market index for correlation analysis
                    Options: "^GSPC" (S&P 500), "^DJI" (Dow Jones), "^IXIC" (NASDAQ), "^RUT" (Russell 2000)
                cw (float): Chronos weight in ensemble (0.0-1.0)
                    Weight given to Chronos model predictions in ensemble methods
                tw (float): Technical weight in ensemble (0.0-1.0)
                    Weight given to technical analysis predictions in ensemble methods
                sw (float): Statistical weight in ensemble (0.0-1.0)
                    Weight given to statistical model predictions in ensemble methods
                rrp (int): Number of random real points to include in long-horizon context
                usm (bool): Use smoothing
                    When True, applies smoothing to predictions to reduce noise and improve continuity
                smt (str): Smoothing type to use
                    Options: "exponential", "moving_average", "kalman", "savitzky_golay", "double_exponential", "triple_exponential", "adaptive", "none"
                sww (float): Smoothing window size for moving average and Savitzky-Golay
                sa (float): Smoothing alpha for exponential methods (0.1-0.9)

            Returns:
                Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
                    - Dict: Basic trading signals (RSI, MACD, Bollinger Bands, SMA, Overall)
                    - go.Figure: Interactive plot with historical data, predictions, and confidence intervals
                    - Dict: Structured product metrics (Market Cap, P/E ratios, financial ratios)
                    - Dict: Advanced risk metrics (Sharpe ratio, VaR, drawdown, correlation)
                    - Dict: Sector and industry analysis metrics
                    - Dict: Market regime detection results
                    - Dict: Stress testing scenario results
                    - Dict: Ensemble method configuration and results
                    - Dict: Advanced trading signals with confidence levels

            Raises:
                gr.Error: If data cannot be fetched, insufficient data points, or other analysis errors
                    Common errors include invalid symbols, market closure, or insufficient historical data

            Example:
                >>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = daily_analysis(
                ...     "AAPL", 30, 365, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2, 4, True, "exponential", 5, 0.3
                ... )

            Notes:
                - Daily analysis is available 24/7 regardless of market hours
                - Maximum prediction period is 365 days
                - Historical data can go back up to 10 years (3650 days)
                - Ensemble weights should sum to 1.0 for optimal results
                - Risk-free rate is typically between 0.02-0.05 (2-5% annually)
                - Smoothing helps reduce prediction noise but may reduce responsiveness to sudden changes
            """
            return analyze_stock(s, "1d", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw, rrp, usm, smt, sww, sa)

        daily_predict_btn.click(
            fn=daily_analysis,
            inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy,
                   use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
                   chronos_weight, technical_weight, statistical_weight,
                   random_real_points, use_smoothing, smoothing_type, smoothing_window, smoothing_alpha],
            outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics,
                    daily_regime_metrics, daily_stress_results, daily_ensemble_metrics, daily_signals_advanced]
        )
        
        # Hourly analysis button click
        def hourly_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
                           rfr: float, mi: str, cw: float, tw: float, sw: float,
                           rrp: int, usm: bool, smt: str, sww: float, sa: float) -> Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]:
            """
            Process hourly timeframe stock analysis with advanced features.

            This function performs high-frequency stock analysis using hourly data, ideal for
            short to medium-term trading strategies. It includes intraday volatility analysis,
            volume-price trends, and momentum indicators optimized for hourly timeframes.

            Args:
                s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL", "TSLA")
                    Must be a valid stock symbol with sufficient liquidity for hourly analysis
                pd (int): Number of days to predict (1-7)
                    Limited to 7 days due to Yahoo Finance hourly data constraints
                ld (int): Historical lookback period in days (1-60)
                    Enhanced to 60 days for hourly data (vs standard 30 days)
                st (str): Prediction strategy to use ("chronos" or "technical")
                    - "chronos": Uses Amazon's Chronos T5 model optimized for hourly data
                    - "technical": Uses technical indicators adjusted for hourly timeframes
                ue (bool): Use ensemble methods
                    Combines multiple models for improved short-term prediction accuracy
                urd (bool): Use regime detection
                    Detects intraday market regimes and volatility patterns
                ust (bool): Use stress testing
                    Performs scenario analysis for short-term market shocks
                rfr (float): Risk-free rate (0.0-0.1)
                    Annual risk-free rate for risk-adjusted calculations
                mi (str): Market index for correlation analysis
                    Options: "^GSPC" (S&P 500), "^DJI" (Dow Jones), "^IXIC" (NASDAQ), "^RUT" (Russell 2000)
                cw (float): Chronos weight in ensemble (0.0-1.0)
                    Weight for Chronos model in ensemble predictions
                tw (float): Technical weight in ensemble (0.0-1.0)
                    Weight for technical analysis in ensemble predictions
                sw (float): Statistical weight in ensemble (0.0-1.0)
                    Weight for statistical models in ensemble predictions
                rrp (int): Number of random real points to include in long-horizon context
                usm (bool): Use smoothing
                    When True, applies smoothing to predictions to reduce noise and improve continuity
                smt (str): Smoothing type to use
                    Options: "exponential", "moving_average", "kalman", "savitzky_golay", "double_exponential", "triple_exponential", "adaptive", "none"
                sww (float): Smoothing window size for moving average and Savitzky-Golay
                sa (float): Smoothing alpha for exponential methods (0.1-0.9)

            Returns:
                Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
                    - Dict: Basic trading signals optimized for hourly timeframes
                    - go.Figure: Interactive plot with hourly data, predictions, and intraday patterns
                    - Dict: Product metrics including intraday volatility and volume analysis
                    - Dict: Risk metrics adjusted for hourly data frequency
                    - Dict: Sector analysis with intraday-specific metrics
                    - Dict: Market regime detection for hourly patterns
                    - Dict: Stress testing results for short-term scenarios
                    - Dict: Ensemble analysis configuration and results
                    - Dict: Advanced signals with intraday-specific indicators

            Raises:
                gr.Error: If market is closed, insufficient data, or analysis errors
                    Hourly data is only available during market hours (9:30 AM - 4:00 PM ET)

            Example:
                >>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = hourly_analysis(
                ...     "AAPL", 3, 14, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2, 4, True, "exponential", 5, 0.3
                ... )

            Notes:
                - Only available during market hours (9:30 AM - 4:00 PM ET, weekdays)
                - Maximum prediction period is 7 days (168 hours)
                - Historical data limited to 60 days due to Yahoo Finance constraints
                - Includes pre/post market data for extended hours analysis
                - Optimized for day trading and swing trading strategies
                - Requires high-liquidity stocks for reliable hourly analysis
                - Smoothing helps reduce prediction noise but may reduce responsiveness to sudden changes
            """
            return analyze_stock(s, "1h", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw, rrp, usm, smt, sww, sa)

        hourly_predict_btn.click(
            fn=hourly_analysis,
            inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy,
                   use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
                   chronos_weight, technical_weight, statistical_weight,
                   random_real_points, use_smoothing, smoothing_type, smoothing_window, smoothing_alpha],
            outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics,
                    hourly_regime_metrics, hourly_stress_results, hourly_ensemble_metrics, hourly_signals_advanced]
        )
        
        # 15-minute analysis button click
        def min15_analysis(s: str, pd: int, ld: int, st: str, ue: bool, urd: bool, ust: bool,
                          rfr: float, mi: str, cw: float, tw: float, sw: float,
                          rrp: int, usm: bool, smt: str, sww: float, sa: float) -> Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]:
            """
            Process 15-minute timeframe stock analysis with advanced features.

            This function performs ultra-high-frequency stock analysis using 15-minute data,
            designed for scalping and very short-term trading strategies. It includes specialized
            indicators for intraday patterns, volume analysis, and momentum detection.

            Args:
                s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL", "TSLA")
                    Must be a highly liquid stock symbol suitable for high-frequency analysis
                pd (int): Number of days to predict (1-2)
                    Limited to 2 days due to 15-minute data granularity and model constraints
                ld (int): Historical lookback period in days (1-7)
                    Enhanced to 7 days for 15-minute data (vs standard 5 days)
                st (str): Prediction strategy to use ("chronos" or "technical")
                    - "chronos": Uses Amazon's Chronos T5 model optimized for 15-minute intervals
                    - "technical": Uses technical indicators specifically tuned for 15-minute timeframes
                ue (bool): Use ensemble methods
                    Combines multiple models for improved ultra-short-term prediction accuracy
                urd (bool): Use regime detection
                    Detects micro-market regimes and volatility clustering patterns
                ust (bool): Use stress testing
                    Performs scenario analysis for intraday market shocks and volatility spikes
                rfr (float): Risk-free rate (0.0-0.1)
                    Annual risk-free rate for risk-adjusted calculations (less relevant for 15m analysis)
                mi (str): Market index for correlation analysis
                    Options: "^GSPC" (S&P 500), "^DJI" (Dow Jones), "^IXIC" (NASDAQ), "^RUT" (Russell 2000)
                cw (float): Chronos weight in ensemble (0.0-1.0)
                    Weight for Chronos model in ensemble predictions
                tw (float): Technical weight in ensemble (0.0-1.0)
                    Weight for technical analysis in ensemble predictions
                sw (float): Statistical weight in ensemble (0.0-1.0)
                    Weight for statistical models in ensemble predictions
                rrp (int): Number of random real points to include in long-horizon context
                usm (bool): Use smoothing
                    When True, applies smoothing to predictions to reduce noise and improve continuity
                smt (str): Smoothing type to use
                    Options: "exponential", "moving_average", "kalman", "savitzky_golay", "double_exponential", "triple_exponential", "adaptive", "none"
                sww (float): Smoothing window size for moving average and Savitzky-Golay
                sa (float): Smoothing alpha for exponential methods (0.1-0.9)

            Returns:
                Tuple[Dict, go.Figure, Dict, Dict, Dict, Dict, Dict, Dict, Dict]: Analysis results containing:
                    - Dict: Basic trading signals optimized for 15-minute timeframes
                    - go.Figure: Interactive plot with 15-minute data, predictions, and micro-patterns
                    - Dict: Product metrics including high-frequency volatility and volume analysis
                    - Dict: Risk metrics adjusted for 15-minute data frequency
                    - Dict: Sector analysis with ultra-short-term metrics
                    - Dict: Market regime detection for 15-minute patterns
                    - Dict: Stress testing results for intraday scenarios
                    - Dict: Ensemble analysis configuration and results
                    - Dict: Advanced signals with 15-minute-specific indicators

            Raises:
                gr.Error: If market is closed, insufficient data points, or analysis errors
                    15-minute data requires at least 64 data points and is only available during market hours

            Example:
                >>> signals, plot, metrics, risk, sector, regime, stress, ensemble, advanced = min15_analysis(
                ...     "AAPL", 1, 3, "chronos", True, True, True, 0.02, "^GSPC", 0.6, 0.2, 0.2, 4, True, "exponential", 5, 0.3
                ... )

            Notes:
                - Only available during market hours (9:30 AM - 4:00 PM ET, weekdays)
                - Maximum prediction period is 2 days (192 15-minute intervals)
                - Historical data limited to 7 days due to Yahoo Finance constraints
                - Requires minimum 64 data points for reliable Chronos predictions
                - Optimized for scalping and very short-term trading strategies
                - Includes specialized indicators for intraday momentum and volume analysis
                - Higher transaction costs and slippage considerations for 15-minute strategies
                - Best suited for highly liquid large-cap stocks with tight bid-ask spreads
                - Smoothing helps reduce prediction noise but may reduce responsiveness to sudden changes
            """
            return analyze_stock(s, "15m", pd, ld, st, ue, urd, ust, rfr, mi, cw, tw, sw, rrp, usm, smt, sww, sa)

        min15_predict_btn.click(
            fn=min15_analysis,
            inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy,
                   use_ensemble, use_regime_detection, use_stress_testing, risk_free_rate, market_index,
                   chronos_weight, technical_weight, statistical_weight,
                   random_real_points, use_smoothing, smoothing_type, smoothing_window, smoothing_alpha],
            outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics,
                    min15_regime_metrics, min15_stress_results, min15_ensemble_metrics, min15_signals_advanced]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(ssr_mode=False, mcp_server=True)