File size: 65,052 Bytes
e46c16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1250d8b
 
 
 
fc97386
e46c16c
fc97386
e46c16c
 
fc97386
e46c16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1250d8b
 
e46c16c
 
 
 
 
 
 
 
 
 
 
 
1250d8b
 
e46c16c
1250d8b
 
 
 
e46c16c
1250d8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e46c16c
 
 
 
 
 
 
 
 
 
1250d8b
 
e46c16c
 
 
1250d8b
 
e46c16c
 
 
1250d8b
e46c16c
 
 
 
 
 
 
1250d8b
 
e46c16c
 
 
 
 
1250d8b
e46c16c
 
 
 
 
1250d8b
e46c16c
 
fc97386
e46c16c
 
 
 
 
 
 
 
 
 
 
 
 
fd219e6
 
 
 
fc97386
fd219e6
 
 
 
 
 
 
 
 
 
 
fc97386
 
 
 
fd219e6
fc97386
fd219e6
 
 
 
 
 
 
 
 
 
 
fc97386
fd219e6
fc97386
fd219e6
 
 
 
 
fc97386
 
fd219e6
 
 
 
fc97386
 
 
fd219e6
 
fc97386
 
 
 
a61193c
fc97386
fd219e6
 
fc97386
fd219e6
fc97386
fd219e6
 
 
 
 
 
fc97386
fd219e6
 
 
 
fc97386
fd219e6
 
fc97386
 
fd219e6
 
 
 
fc97386
 
fd219e6
 
 
fc97386
fd219e6
 
 
 
fc97386
fd219e6
 
 
 
 
 
 
fc97386
fd219e6
 
fc97386
 
fd219e6
 
 
 
fc97386
fd219e6
 
 
 
 
fc97386
fd219e6
fc97386
 
 
 
fd219e6
fc97386
 
fd219e6
 
 
 
 
 
fc97386
fd219e6
 
 
 
fc97386
fd219e6
 
 
 
fc97386
a61193c
fc97386
fd219e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc97386
 
206df47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3bad66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206df47
fc97386
 
 
 
 
42c74f1
fc97386
e3bad66
fc97386
 
 
df74693
c6e5cb3
fc97386
 
dd472f3
fc97386
 
 
 
e495a1b
fc97386
 
96a08cc
fc97386
dd472f3
585e5dc
03e334e
e3bad66
 
77f9e55
fc97386
 
 
 
 
 
 
 
 
 
 
 
 
f0c888a
4c6c869
fc97386
d43e0c2
a052de1
 
f0c888a
 
 
50888a1
14d3931
910964e
 
 
 
8074918
fc97386
 
96a08cc
8842541
fc97386
 
 
 
 
 
 
 
4a9aada
 
 
 
 
 
 
 
 
 
fc97386
49c6ab9
efb55bd
 
fc97386
 
 
483dac4
 
 
96a08cc
483dac4
 
2ec04b1
 
 
 
 
 
 
 
 
 
 
bce6aeb
cff1101
2ec04b1
 
 
 
 
 
e3bad66
2ec04b1
e3bad66
2ec04b1
 
 
1061843
 
bce6aeb
 
2ec04b1
bce6aeb
 
 
 
 
 
 
 
 
2ec04b1
bce6aeb
 
2ec04b1
bce6aeb
 
 
2ec04b1
bce6aeb
2ec04b1
bce6aeb
 
 
 
 
 
 
 
 
 
 
93af547
bce6aeb
 
 
 
 
 
 
 
 
96a08cc
bce6aeb
 
93af547
bce6aeb
 
 
 
69f5a63
bce6aeb
 
 
1061843
18267b7
 
6a3c47b
 
 
 
 
 
cff1101
 
 
1061843
 
2ec04b1
 
 
e3bad66
c3a8075
dc0836e
b0d6a2b
dc0836e
f716ad8
e3bad66
fc97386
 
 
 
8174147
fc97386
 
 
 
 
 
 
 
 
 
 
 
 
 
0c822b5
 
0b705a8
fc97386
206df47
e300076
 
 
206df47
fc97386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc0836e
 
 
 
370fa6b
 
0b705a8
 
bfaebe5
99711c6
fc97386
54eb8c4
fc97386
 
7e3472a
9e30dbd
 
 
 
 
 
 
 
 
 
 
ec28fec
9e30dbd
 
 
 
 
dc0836e
 
 
 
d99d736
 
1475f6c
fc97386
dc0836e
 
 
 
fc97386
 
 
8842541
fc97386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206df47
e300076
 
 
206df47
fc97386
 
 
 
 
e478c1b
9e30dbd
 
 
 
 
b8f9ab3
 
 
 
 
 
 
 
 
 
 
 
f2c8d73
719aa6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b942da5
c6248bb
85a805b
c6248bb
b942da5
c6248bb
 
 
 
 
 
85a805b
c6248bb
b942da5
c6248bb
85a805b
b942da5
8f93c75
b942da5
 
 
 
 
 
d413a6d
3fdd3b8
 
 
b942da5
 
3fdd3b8
b942da5
 
083e61d
34adc36
2c562c1
34adc36
 
2c562c1
 
 
 
 
083e61d
3a2af74
0a31dcc
 
34e5647
0a31dcc
 
 
 
 
 
 
 
 
aea4665
 
 
0a31dcc
 
 
bdff327
 
117948b
b18ae63
bdff327
 
0a31dcc
 
c6248bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73dbe92
c6248bb
 
 
 
 
 
73dbe92
c6248bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d0a8b5
5c2ae41
 
c6248bb
 
5c2ae41
 
 
b942da5
5c2ae41
b942da5
c6248bb
 
 
a799b55
c6248bb
 
 
a799b55
c6248bb
 
 
a799b55
c6248bb
 
 
a799b55
c6248bb
 
 
a799b55
c6248bb
 
 
a799b55
5c2ae41
 
b942da5
5c2ae41
083e61d
 
 
34adc36
 
083e61d
 
 
 
 
34adc36
083e61d
 
 
 
 
0a31dcc
 
34e5647
0a31dcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c2ae41
719aa6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35afca4
9e30dbd
b54d9ca
9d0a8b5
5c2ae41
b8f9ab3
9e30dbd
85a805b
 
b527090
85a805b
a3addfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a805b
 
a3addfd
 
2f59b83
1724636
34adc36
 
1724636
 
81eecd5
ed41cb7
34e5647
 
0a31dcc
 
 
1724636
 
 
 
 
 
 
 
 
 
c8f1636
a9b36c5
c6248bb
34adc36
1724636
0a31dcc
 
1724636
 
c6248bb
23e2e2b
 
 
 
 
 
85a805b
 
23e2e2b
 
 
 
 
 
 
 
 
85a805b
 
430d1c9
2d83546
686d137
49b4dd5
 
686d137
4693a49
 
85a805b
 
 
9e30dbd
85a805b
 
e57e35e
 
d413a6d
d99d736
fc97386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403b9b0
89b3647
206df47
89b3647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b12991
89b3647
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
# import gradio as gr
# import numpy as np
# import cv2 as cv
# import requests
# import time
# import os

# host = os.environ.get("host")
# code = os.environ.get("code")
# model_llm = os.environ.get("model")
# content = os.environ.get("content")
# state = os.environ.get("state")
# system = os.environ.get("system")
# auth = os.environ.get("auth")
# data = None
# model = None
# image = None
# prediction = None
# labels = None

# print('START')
# np.set_printoptions(suppress=True)

# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)

# with open("labels.txt", "r") as file:
#     labels = file.read().splitlines()

# messages = [
#     {"role": "system", "content": system}
# ]

# def classify(UserInput, Image, Textbox2, Textbox3):
#     if Textbox3 == code:
#         print("Image:  ", Image)
#         if Image is not None:
#             output = []
#             image_data = np.array(Image)
#             image_data = cv.resize(image_data, (224, 224))
#             image_array = np.asarray(image_data)
#             normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
#             data[0] = normalized_image_array
        
#             import tensorflow as tf
#             model = tf.keras.models.load_model('keras_model.h5')
        
#             prediction = model.predict(data)
            
#             max_label_index = None
#             max_prediction_value = -1
    
#             print('Prediction')
    
#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(UserInput)
#             messages.append({"role": "user", "content": UserInput})
        
#             for i, label in enumerate(labels):
#                 prediction_value = float(prediction[0][i])
#                 rounded_value = round(prediction_value, 2)
#                 print(f'{label}: {rounded_value}')
        
#                 if prediction_value > max_prediction_value:
#                     max_label_index = i
#                     max_prediction_value = prediction_value 
        
#             if max_label_index is not None:
#                 max_label = labels[max_label_index].split(' ', 1)[1]
#                 max_rounded_prediction = round(max_prediction_value, 2)
#                 print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
    
#                 time.sleep(1)
#                 if max_rounded_prediction > 0.5:
#                     print("\nWays to dispose of this waste: " + max_label)
#                     messages.append({"role": "user", "content": content + " " + max_label})
        
#                     headers = {
#                         "Content-Type": "application/json",
#                         "Authorization": f"Bearer {auth}"
#                     }
            
#                     response = requests.post(host, headers=headers, json={
#                         "messages": messages,
#                         "model": model_llm
#                     }).json()
                    
#                     reply = response["choices"][0]["message"]["content"]
#                     messages.append({"role": "assistant", "content": reply})
                    
#                     output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
#                 elif max_rounded_prediction < 0.5:
#                     output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
            
#             return output

#         else:
#             output = []
            
#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(UserInput)
        
#             for i in Textbox2_edited:
#                 messages.append(
#                     {"role": "user", "content": i}
#             )
            
#             print("messages after appending:", messages)
        
#             time.sleep(1)
#             messages.append({"role": "user", "content": UserInput})

#             headers = {
#                 "Content-Type": "application/json",
#                 "Authorization": f"Bearer {auth}"
#             }
    
#             response = requests.post(host, headers=headers, json={
#                 "messages": messages,
#                 "model": model_llm
#             }).json()
            
#             reply = response["choices"][0]["message"]["content"]
#             messages.append({"role": "assistant", "content": reply})

#             output.append({"Mode": "Chat", "content": reply})
            
#             return output

#     else:
#         return "Unauthorized"

# user_inputs = [
#     gr.Textbox(label="User Input", type="text"),
#     gr.Image(),
#     gr.Textbox(label="Textbox2", type="text"),
#     gr.Textbox(label="Textbox3", type="password")
# ]

# iface = gr.Interface(
#     fn=classify,
#     inputs=user_inputs,
#     outputs=gr.outputs.JSON(),
#     title="Classifier",
# )
# iface.launch()


# import gradio as gr
# import numpy as np
# import cv2 as cv
# import requests
# import time
# import os

# host = os.environ.get("host")
# code = os.environ.get("code")
# model_llm = os.environ.get("model")
# content = os.environ.get("content")
# state = os.environ.get("state")
# system = os.environ.get("system")
# auth = os.environ.get("auth")
# auth2 = os.environ.get("auth2")
# data = None
# model = None
# image = None
# prediction = None
# labels = None

# print('START')
# np.set_printoptions(suppress=True)

# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)

# with open("labels.txt", "r") as file:
#     labels = file.read().splitlines()

# messages = [
#     {"role": "system", "content": system}
# ]

# def classify(platform,UserInput, Image, Textbox2, Textbox3):
#     if Textbox3 == code:
#         if Image is not None:
#             output = []
#             headers = {
#                 "Authorization": f"Bearer {auth2}"
#             }
#             if platform == "wh":
#                 get_image = requests.get(Image, headers=headers)
#                 print(get_image.content)
#             elif platform == "web":
#                 print("WEB")
#             else:
#                 pass
#             image_data = np.array(get_image)
#             image_data = cv.resize(image_data, (224, 224))
#             image_array = np.asarray(image_data)
#             normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
#             data[0] = normalized_image_array
        
#             import tensorflow as tf
#             model = tf.keras.models.load_model('keras_model.h5')
        
#             prediction = model.predict(data)
            
#             max_label_index = None
#             max_prediction_value = -1
    
#             print('Prediction')
    
#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(UserInput)
#             messages.append({"role": "user", "content": UserInput})
        
#             for i, label in enumerate(labels):
#                 prediction_value = float(prediction[0][i])
#                 rounded_value = round(prediction_value, 2)
#                 print(f'{label}: {rounded_value}')
        
#                 if prediction_value > max_prediction_value:
#                     max_label_index = i
#                     max_prediction_value = prediction_value 
        
#             if max_label_index is not None:
#                 max_label = labels[max_label_index].split(' ', 1)[1]
#                 max_rounded_prediction = round(max_prediction_value, 2)
#                 print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
    
#                 time.sleep(1)
#                 if max_rounded_prediction > 0.5:
#                     print("\nWays to dispose of this waste: " + max_label)
#                     messages.append({"role": "user", "content": content + " " + max_label})
        
#                     headers = {
#                         "Content-Type": "application/json",
#                         "Authorization": f"Bearer {auth}"
#                     }
            
#                     response = requests.post(host, headers=headers, json={
#                         "messages": messages,
#                         "model": model_llm
#                     }).json()
                    
#                     reply = response["choices"][0]["message"]["content"]
#                     messages.append({"role": "assistant", "content": reply})
                    
#                     output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
#                 elif max_rounded_prediction < 0.5:
#                     output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
            
#             return output

#         else:
#             output = []
            
#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(UserInput)
        
#             for i in Textbox2_edited:
#                 messages.append(
#                     {"role": "user", "content": i}
#             )
            
#             print("messages after appending:", messages)
        
#             time.sleep(1)
#             messages.append({"role": "user", "content": UserInput})

#             headers = {
#                 "Content-Type": "application/json",
#                 "Authorization": f"Bearer {auth}"
#             }
    
#             response = requests.post(host, headers=headers, json={
#                 "messages": messages,
#                 "model": model_llm
#             }).json()
            
#             reply = response["choices"][0]["message"]["content"]
#             messages.append({"role": "assistant", "content": reply})

#             output.append({"Mode": "Chat", "content": reply})
            
#             return output

#     else:
#         return "Unauthorized"

# user_inputs = [
#     gr.Textbox(label="Platform", type="text"),
#     gr.Textbox(label="User Input", type="text"),
#     gr.Textbox(label="Image", type="text"),
#     gr.Textbox(label="Textbox2", type="text"),
#     gr.Textbox(label="Textbox3", type="password")
# ]

# iface = gr.Interface(
#     fn=classify,
#     inputs=user_inputs,
#     outputs=gr.outputs.JSON(),
#     title="Classifier",
# )
# iface.launch()


############################### MOST WORKING

# import gradio as gr
# import numpy as np
# import cv2 as cv
# import requests
# import io
# from PIL import Image
# import os
# import tensorflow as tf
# import random

# host = os.environ.get("host")
# code = os.environ.get("code")
# model_llm = os.environ.get("model")
# content = os.environ.get("content")
# state = os.environ.get("state")
# system = os.environ.get("system")
# auth = os.environ.get("auth")
# auth2 = os.environ.get("auth2")
# data = None

# np.set_printoptions(suppress=True)

# model = tf.keras.models.load_model('keras_model.h5')
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)

# with open("labels.txt", "r") as file:
#     labels = file.read().splitlines()

# messages = [
#     {"role": "system", "content": system}
# ]

# def classify(platform, UserInput, Images, Textbox2, Textbox3):
#     if Textbox3 == code:
#         imageData = None
#         if Images != "None":
#             output = []
#             headers = {
#                 "Authorization": f"Bearer {auth2}"
#             }
#             if platform == "wh":
#                 get_image = requests.get(Images, headers=headers)
#                 if get_image.status_code == 200:
#                     image_data = get_image.content
#             elif platform == "web":
#                 print("WEB")
#             else:
#                 pass

#             image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
#             image = cv.resize(image, (224, 224))
#             image_array = np.asarray(image)
#             normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
#             data[0] = normalized_image_array
            
#             prediction = model.predict(data)

#             max_label_index = None
#             max_prediction_value = -1

#             print('Prediction')

#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(UserInput)
#             print(UserInput)
#             print("appending")
#             messages.append({"role": "user", "content": UserInput})

#             for i, label in enumerate(labels):
#                 prediction_value = float(prediction[0][i])
#                 rounded_value = round(prediction_value, 2)
#                 print(f'{label}: {rounded_value}')

#                 if prediction_value > max_prediction_value:
#                     max_label_index = i
#                     max_prediction_value = prediction_value

#             if max_label_index is not None:
#                 max_label = labels[max_label_index].split(' ', 1)[1]
#                 max_rounded_prediction = round(max_prediction_value, 2)
#                 print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')

#                 if max_rounded_prediction > 0.5:
#                     print("\nWays to dispose of this waste: " + max_label)
#                     messages.append({"role": "user", "content": content + " " + max_label})
#                     # messages.append({"role": "user", "content": max_label})

#                     print("IMAGE messages after appending:", messages)

#                     header = {
#                         "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
#                         "Content-Type": "application/json",
#                         "Authorization": f"Bearer {auth}"
#                     }

#                     try:
#                         response = requests.post(host, headers=header, json={
#                             "messages": messages,
#                             "model": model_llm
#                         }).json()
#                         print("RESPONSE TRY",response)
#                         reply = response["choices"][0]["message"]["content"]
#                         # messages.append({"role": "assistant", "content": reply})
#                         output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
#                     except:
#                         print("DOESN'T WORK")
                        
#                 elif max_rounded_prediction < 0.5:
#                     output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})

#             return output

#         elif Images == "None":
#             output = []

#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(UserInput)

#             for i in Textbox2_edited:
#                 messages.append({"role": "user", "content": i})

#             print("messages after appending:", messages)

#             messages.append({"role": "user", "content": UserInput})

#             headers = {
#                 "Content-Type": "application/json",
#                 "Authorization": f"Bearer {auth}"
#             }

#             response = requests.post(host, headers=headers, json={
#                 "messages": messages,
#                 "model": model_llm
#             }).json()

#             reply = response["choices"][0]["message"]["content"]
#             # messages.append({"role": "assistant", "content": reply})

#             output.append({"Mode": "Chat", "content": reply})

#             return output
#     else:
#         return "Unauthorized"

# user_inputs = [
#     gr.Textbox(label="Platform", type="text"),
#     gr.Textbox(label="User Input", type="text"),
#     gr.Textbox(label="Image", type="text"),
#     gr.Textbox(label="Textbox2", type="text"),
#     gr.Textbox(label="Textbox3", type="password")
# ]

# iface = gr.Interface(
#     fn=classify,
#     inputs=user_inputs,
#     outputs=gr.outputs.JSON(),
#     title="Classifier",
# )
# iface.launch()

############## WORKING AS OF THIS MONTH ##############

# import gradio as gr
# import numpy as np
# import cv2 as cv
# import requests
# import io
# import time
# from PIL import Image
# import os
# import tensorflow as tf
# import random
# import openai

# host = os.environ.get("host")
# code = os.environ.get("code")
# model_llm = os.environ.get("model")
# content = os.environ.get("content")
# state = os.environ.get("state")
# system = os.environ.get("system")
# auth = os.environ.get("auth")
# auth2 = os.environ.get("auth2")
# openai.api_key = os.environ.get("auth")
# openai.api_base = os.environ.get("host")
# data = None

# np.set_printoptions(suppress=True)

# model = tf.keras.models.load_model('keras_model.h5')
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)

# with open("labels.txt", "r") as file:
#     labels = file.read().splitlines()

# messages = [
#     {"role": "system", "content": system}
# ]

# def classify(platform, UserInput, Images, Textbox2, Textbox3):
#     if UserInput.lower() == "clear history":
#         messages.clear()
#         messages.append(
#             {"role": "system", "content": system}
#         )
        
#     if Textbox3 == code:
#         imageData = None
#         if Images != "None":
#             output = []
#             headers = {
#                 "Authorization": f"Bearer {auth2}"
#             }
#             if platform == "wh":
#                 get_image = requests.get(Images, headers=headers)
#                 if get_image.status_code == 200:
#                     image_data = get_image.content
#             elif platform == "web":
#                 # print("WEB")
#                 url = requests.get(Images)
#                 image_data = url.content
#             else:
#                 pass

#             image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
#             image = cv.resize(image, (224, 224))
#             image_array = np.asarray(image)
#             normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
#             data[0] = normalized_image_array
            
#             prediction = model.predict(data)

#             max_label_index = None
#             max_prediction_value = -1

#             print('Prediction')

#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(UserInput)
#             print(UserInput)
#             print("appending")
#             # messages.append({"role": "user", "content": UserInput})

#             # Pop earlier messages if there are more than 10
#             # if UserInput.lower() == "clear history":
#             #     while len(messages) > 10:
#             #         messages.pop(0)

#             for i, label in enumerate(labels):
#                 prediction_value = float(prediction[0][i])
#                 rounded_value = round(prediction_value, 2)
#                 print(f'{label}: {rounded_value}')

#                 if prediction_value > max_prediction_value:
#                     max_label_index = i
#                     max_prediction_value = prediction_value

#             if max_label_index is not None:
#                 max_label = labels[max_label_index].split(' ', 1)[1]
#                 max_rounded_prediction = round(max_prediction_value, 2)
#                 print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')

#                 if max_rounded_prediction > 0.5:
#                     print("\nWays to dispose of this waste: " + max_label)
#                     messages.append({"role": "user", "content": content + " " + max_label})
#                     print("IMAGE messages after appending:", messages)

#                     print("Message list of image:", messages)

#                     header = {
#                         "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
#                         "Content-Type": "application/json",
#                         "Authorization": f"Bearer {auth}"
#                     }

#                     try:
#                         # response = requests.post(host, headers=header, json={
#                         #     "messages": messages,
#                         #     "model": model_llm
#                         # }).json()
                        
#                         completion = openai.ChatCompletion.create(
#                             model="gpt-3.5-turbo",
#                             messages=messages
#                         )
        
            
#                         # reply = response["choices"][0]["message"]["content"]
#                         reply = completion.choices[0].message['content']
#                         # # reply = response["choices"][0]["message"]["content"]
#                         # reply = response.choices[0].message['content']
#                         print("RESPONSE TRY", completion)


#                         output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
#                     except:
#                         print("DOESN'T WORK")
                        
#                 elif max_rounded_prediction < 0.5:
#                     output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})

#             return output

#         elif Images == "None":
#             output = []

#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(UserInput)

#             for i in Textbox2_edited:
#                 messages.append({"role": "user", "content": i})

#             print("messages after appending:", messages)

#             messages.append({"role": "user", "content": UserInput})

#             # Pop earlier messages if there are more than 10
#             # if UserInput.lower() == "clear history":
#             #     while len(messages) > 10:
#             #         messages.pop(0)

#             headers = {
#                 "Content-Type": "application/json",
#                 "Authorization": f"Bearer {auth}"
#             }

#             try:
#                 # response = requests.post(host, headers=headers, json={
#                 #     "messages": messages,
#                 #     "model": model_llm
#                 # }).json()

#                 completion = openai.ChatCompletion.create(
#                     model="gpt-3.5-turbo",
#                     messages=messages
#                 )

    
#                 # reply = response["choices"][0]["message"]["content"]
#                 reply = completion.choices[0].message['content']
#                 print("RESPONSE TRY (NO IMAGE)", completion, reply)

#             except:
#                 reply = "Maximum messages: 15. Please clear your history and Try Again! (No Image)"
#             output.append({"Mode": "Chat", "content": reply})

#             return output
#     else:
#         return "Unauthorized"

# user_inputs = [
#     gr.Textbox(label="Platform", type="text"),
#     gr.Textbox(label="User Input", type="text"),
#     gr.Textbox(label="Image", type="text"),
#     gr.Textbox(label="Textbox2", type="text"),
#     gr.Textbox(label="Textbox3", type="password")
# ]

# iface = gr.Interface(
#     fn=classify,
#     inputs=user_inputs,
#     outputs=gr.outputs.JSON(),
#     title="Classifier",
# )
# iface.launch()


############## NEW VERSION ##############

import gradio as gr
import numpy as np
import cv2 as cv
import requests
import io
import time
from PIL import Image
import base64
import os
import tensorflow as tf
import random
import openai
import json

host = os.environ.get("host")
host2 = os.environ.get("host2")
code = os.environ.get("code")
model_llm = os.environ.get("model")
content = os.environ.get("content")
state = os.environ.get("state")
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
system = os.environ.get("system")
auth = os.environ.get("auth")
g_auth = os.environ.get("g_auth")
auth2 = os.environ.get("auth2")
auth4 = os.environ.get("auth4")
openai.api_key = auth
openai.api_base = host
vis_url = os.environ.get("vis_url")
vis_auth = os.environ.get("vis_auth")
endpoint = os.environ.get("endpoint")
data = None

np.set_printoptions(suppress=True)

model = tf.keras.models.load_model('keras_model.h5')

with open("labels.txt", "r") as file:
    labels = file.read().splitlines()

messages = [
    {"role": "system", "content": system}
]

messages.clear()

def classify(platform, UserInput, Images, Textbox2, Textbox3):
    print("MODELLL:", model_llm)
    print(auth)

    messages.append(
            {"role": "system", "content": system}
    )
    print(UserInput)
    if UserInput == "clear history":
        messages.clear()
        messages.append(
            {"role": "system", "content": system}
        )
        
    if Textbox3 == code:
        imageData = None
        global image_url
        if Images != "None":
            output = []
            headers = {
                "Authorization": f"Bearer {auth2}"
            }
            if platform == "wh":
                get_image = requests.get(Images, headers=headers)
                if get_image.status_code == 200:
                    image_data = get_image.content
                    folder_name = "upload"
                    file_name = "saved_image.jpg"
    
                    os.makedirs(folder_name, exist_ok=True)
    
                    file_path = os.path.join(folder_name, file_name)
                    with open(file_path, 'wb') as file:
                        file.write(image_data)
    
                    print(f"Image saved successfully to {file_path}")
            elif platform == "web":
                # print("WEB")
                url = requests.get(Images)
                image_data = url.content
            else:
                pass

            def encode_image(image: Image.Image, format: str = "PNG") -> str:
                with io.BytesIO() as buffer:
                    image.save(buffer, format=format)
                    encoded_image = buffer.getvalue().decode("latin-1")
                return encoded_image

            def url_to_base64(image_url):
                try:
                    response = requests.get(image_url)
                    response.raise_for_status()
                    base64_data = base64.b64encode(response.content).decode('utf-8')
                    return base64_data
                except Exception as e:
                    print(f"Error: {e}")
                    return None


            def vision(caption):
                print("VISSS")
                # with open("image.png", "wb") as file1_write:
                #     file1_write.write(image_data)
                
                # Example usage
                # image_url = 'https://example.com/path/to/image.jpg'
                # base64_data = url_to_base64(image_url)
        
                # image = Image.open(io.BytesIO(file_content))
            
                # base64_image_str = encode_image(image)

                if image_data:
                    try:
                        # Open the image directly from the image data
                        # image = Image.open(io.BytesIO(image_data))
                        # base64_image_str = encode_image(image)
                        
                        # payload = {
                        #     "content": [
                        #         {
                        #             "prompt": "What's this image about? or What does this image contains?",
                        #             "image": base64_image_str,
                        #         }
                        #     ],
                        #     "token": vis_auth,
                        # }
                    
                        # url = vis_url
                        # headers = {"Content-Type": "application/json"}
                    
                        # response = requests.post(url, headers=headers, data=json.dumps(payload))
                        # results = response.json()
                        # results = results["result"]
                    
                        # answer_index = results.find("Answer:")
                    
                        # if answer_index != -1:
                        #     try:
                        #         result_text = results[answer_index + len("Answer:"):].strip()
                        #         print(result_text)
                        #         return result_text
                        #     except:
                        #         pass
                        # else:
                        #     return "Answer: not found in the string."
                        payload = json.dumps(
                            {
                                "messages": [{
                                    "role": "user",
                                    "content": [
                                        {
                                            "type": "text",
                                            "text": caption
                                        },
                            
                                        {
                                            "type": "image_url",
                                            "image_url": image_url
                                        }
                                    ]
                                }],
                                "model": "gemini-pro-vision"
                            }
                        )
                        headers = {
                            'Authorization': f'Bearer {auth2}',
                            'User-Agent': 'Apifox/1.0.0 (https://apifox.com)',
                            'Content-Type': 'application/json'
                        }

                        print("IMAGGGGEEE;",Images)

                        # response = requests.request("POST", "https://api.openai.com/v1/chat/completions", headers=headers, data=payload)
                        # print("GGGGG:",response.content)
                        response = openai.ChatCompletion.create(
                            model="gpt-3.5-turbo",
                            messages=messages
                        )
                        # response = response.json()
                        # res = response["choices"][0]["message"]["content"]
                        return response.content
                    except:
                        return "ERRRRRRR"
                else:
                    print("Error: Image data is not available.")
                    return None

            if UserInput is not None:
                caption = UserInput.lower()
                return vision(caption)
            else:
                caption = None

            image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
            image = cv.resize(image, (224, 224))
            image_array = np.asarray(image)
            normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
            data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
            data[0] = normalized_image_array
            
            prediction = model.predict(data)

            max_label_index = None
            max_prediction_value = -1

            print('Prediction')

            Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
            Textbox2 = Textbox2.split(",")
            Textbox2_edited = [x.strip() for x in Textbox2]
            Textbox2_edited = list(Textbox2_edited)
            Textbox2_edited.append(UserInput)
            print(UserInput)
            print("appending")
            # messages.append({"role": "user", "content": UserInput})

            # Pop earlier messages if there are more than 10
            # if UserInput.lower() == "clear history":
            #     while len(messages) > 10:
            #         messages.pop(0)

            for i, label in enumerate(labels):
                prediction_value = float(prediction[0][i])
                rounded_value = round(prediction_value, 2)
                print(f'{label}: {rounded_value}')

                if prediction_value > max_prediction_value:
                    max_label_index = i
                    max_prediction_value = prediction_value

            if max_label_index is not None:
                max_label = labels[max_label_index].split(' ', 1)[1]
                max_rounded_prediction = round(max_prediction_value, 2)
                print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')

                if max_rounded_prediction > 0.5:
                    print("\nWays to dispose of this waste: " + max_label)
                    if caption == None:
                        messages.append({"role": "user", "content": content + " " + max_label})
                    else:
                        messages.append({"role": "user", "content": caption})
                    print("IMAGE messages after appending:", messages)

                    print("Message list of image:", messages)

                    header = {
                        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
                        "Content-Type": "application/json",
                        # "Authorization": f"Bearer {auth}"
                    }

                    try:
                        # response = requests.post(host, headers=header, json={
                        #     "messages": messages,
                        #     "model": model_llm
                        # }).json()
                        
                        completion = openai.ChatCompletion.create(
                            model="gpt-3.5-turbo",
                            messages=messages
                        )
        
            
                        # reply = response["choices"][0]["message"]["content"]
                        reply = completion.choices[0].message['content']
                        # # reply = response["choices"][0]["message"]["content"]
                        # reply = response.choices[0].message['content']
                        print("RESPONSE TRY", completion)

                        if caption == None:
                            output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
                        else:
                            output.append({"Mode": "Image with Caption", "content": reply})
                    except:
                        print("DOESN'T WORK")
                        
                elif max_rounded_prediction < 0.5:
                    if caption == None:
                        output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
                    else:
                        pass

            return output

        elif Images == "None":
            output = []

            Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
            Textbox2 = Textbox2.split(",")
            Textbox2_edited = [x.strip() for x in Textbox2]
            Textbox2_edited = list(Textbox2_edited)
            Textbox2_edited.append(UserInput)

            for i in Textbox2_edited:
                messages.append({"role": "user", "content": i})

            print("messages after appending:", messages)

            messages.append({"role": "user", "content": UserInput})

            # Pop earlier messages if there are more than 10
            # if UserInput.lower() == "clear history":
            #     while len(messages) > 10:
            #         messages.pop(0)

            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {auth}"
            }

            try:
                # response = requests.post(host, headers=headers, json={
                #     "messages": messages,
                #     "model": model_llm
                # }).json()

                # def get_current_weather(location, unit):
                #     params = {
                #         'appid': '334f89b7998e8df818503b0f33085621',
                #         'q': location,
                #         'units': unit
                #     }
                #     response = requests.get('https://api.openweathermap.org/data/2.5/weather', params=params)
                #     if response.status_code == 200:
                #         return response.json()
                #     else:
                #         return None

                # @openai_func
                # def testing_this(name: str, number: str):
                #     """
                #     This function ask user for their name and a random integer and returns it.
                #     @param name: The name of the user
                #     @param number: Random number entered by the user
                #     """

                #     if name is None:
                #         return "Your name must be provided, inorder to run the function call"
                #     elif number is None:
                #         return "A random number must be provided, inorder to run the function call"
                #     elif name is None and number is None :
                #         return "You must provide your name and a random number to continue."
                #     else:
                #         return "Function call successfull"

                def book_enquiry(full_name: str, contact_number: str, street_address: str, 
                                 landmark: str, zip_code: str, emirate: str, reason: str):
                    """
                    This function asks the user for their details and books an enquiry for waste disposal.
                    @param full_name: The full name of the user
                    @param contact_number: The contact number of the user
                    @param street_address: The street address of the user
                    @param landmark: The landmark near the user's location
                    @param zip_code: The zip code of the user's location
                    @param emirate: The emirate of the user's location
                    @param reason: The reason for waste disposal enquiry
                    """
                
                    if not all([full_name, contact_number, street_address, landmark, zip_code, emirate, reason]):
                        return "You must provide your details to book an enquiry."
                    else:
                        enquiry = requests.post(endpoint, json={
                            "mode": "WhatsApp",
                            "full_name": full_name,
                            "contact_number": contact_number,
                            "street_address": street_address,
                            "landmark": landmark,
                            "zip_code": zip_code,
                            "emirate": emirate,
                            "reason_for_visit": reason,
                        })
                        
                        if enquiry.status_code == 200:
                            print(f"Booking enquiry for {full_name} with contact number {contact_number}.")
                            return f"Booking enquiry for {full_name} with contact number {contact_number} successful!. We'll get back to you shortly!"
                        else:
                            print(f"Booking enquiry for {full_name} with contact number {contact_number}.")
                            return f"Booking enquiry for {full_name} with contact number {contact_number} declined!. Please try again or Contact our support team"
                            
                def clear_chat_history(command: str):
                    """
                    This function allow the user to clear the chat history.
                    @param command: This should be always clear chat history or something like that
                    """
                    messages.clear()
                    messages.append(
                        {"role": "system", "content": system}
                    )
                     
                    return "Chat History cleared successfuly!"
                    
                    
                def get_total_points(name: str, email: str):
                    """
                    This function allow the user to view their total points they got by Waste Diposal
                    @param name: This should the registered name of the user
                    @param email: This should be the registered email of the user
                    """
                    points = requests.post("https://sustainai.tech/user/points", json={
                        "name": name,
                        "email": email
                    })

                    print("NAME:", name, "|", "EMAIL:", email)
                    print("RESPONSE FROM POINTS:", points.content)
                    
                    if points.status_code == 200:
                        point_data = points.json()
                        try:
                            userPoints = point_data["points"]
                            print("POINTSSSSS:", points)
                            return f"User Found. Successful. Your Total points is: {userPoints} (if the point is 0 then say 'You got this or smth like that....Dipose more waste to earn more points.')'"
                        except:
                            return "Error Occured while retrieving user points. Please try again. "
                    else:
                        return "The request has been declined. Please ensure that the provided details match the records registered in our system during the registration process"

                # def get_current_weather(location: str, unit: str):
                #     """
                #     This function get's the current weather in a given location.
                #     @param location: The name of the user
                #     @param unit: Random number entered by the user
                #     """

                #     if location is None:
                #         return "Your name must be provided, inorder to run the function call"
                #     else:
                #         params = {
                #             'appid': '334f89b7998e8df818503b0f33085621',
                #             'q': location,
                #             'units': unit
                #         }
                #         response = requests.get('https://api.openweathermap.org/data/2.5/weather', params=params)
                #         print(response.status_code)
                #         if response.status_code == 200:
                #             temperature = weather_data.get('main', {}).get('temp', 'TEMP_FROM_THE_JSON')
                #             forecast = [item.get('description', '') for item in weather_data.get('weather', [])]
                
                #             new_json = {
                #                 "location": location,
                #                 "temperature": temperature,
                #                 "unit": unit,
                #                 "forecast": forecast
                #             }
                
                #             return new_json
                #         else:
                #             return None

                # functions = [
                #     {
                #         "name": "get_current_weather",
                #         "description": "Get the current weather in a given location",
                #         "parameters": {
                #             "type": "object",
                #             "properties": {
                #                 "location": {
                #                     "type": "string",
                #                     "description": "The city and state, e.g. San Francisco, CA",
                #                 },
                #                 "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                #             },
                #             "required": ["location"],
                #         },
                #     }
                # ]

                functions = [
                    {
                        "name": "book_enquiry",
                        "description": "Book an equiry with the user provided details to the support team",
                        "parameters": {
                            "type": "object",
                            "properties": {
                                "full_name": {
                                    "type": "string",
                                    "description": "The user's full_name provided by him/her, e.g. Alex Simon, Sarah Mary",
                                },
                                "contact_number": {
                                    "type": "string",
                                    "description": "The user's contact number provided by him/her, e.g. 1234567890",
                                },
                                "street_address": {
                                    "type": "string",
                                    "description": "The user's street address provided by him/her, e.g. Omando Street 123",
                                },
                                "landmark": {
                                    "type": "string",
                                    "description": "The user's landmark provided by him/her near his location, e.g. Near 123 Hotel",
                                },
                                "zip_code": {
                                    "type": "string",
                                    "description": "The user's zipcode provided by him/her based on the location, e.g. 367774, 0000",
                                },
                                "emirate": {
                                    "type": "string",
                                    "description": "The user's emirate provided by him/her, e.g. Sharjah, Abudhabi",
                                },
                                "reason": {
                                    "type": "string",
                                    "description": "The user's reason provided by him/her for the booking enquiry",
                                },
                            },
                            "required": ["full_name", "contact_number", "street_address", "landmark", "zip_code", "emirate", "reason"],
                        },
                    },

                    {
                        "name": "clear_chat_history",
                        "description": "This function allow the user to clear the chat history",
                        "parameters": {
                            "type": "object",
                            "properties": {
                                "command": {
                                    "type": "string",
                                    "description": "This should be always clear chat history or something like that",
                                },
                            },
                            "required": ["command"],
                        },
                    },

                    {
                        "name": "get_total_points",
                        "description": "This function allow the user to view their total points they got by Waste Diposal",
                        "parameters": {
                            "type": "object",
                            "properties": {
                                "name": {
                                    "type": "string",
                                    "description": "This should the registered name of the user",
                                },
                                "email": {
                                    "type": "string",
                                    "description": "This should be the registered email of the user",
                                },
                            },
                            "required": ["name", "email"],
                        },
                    },
                ]

                # functions = [
                #     {
                #         "name": "testing_this",
                #         "description": "This function ask user for their name and a random integer and returns it",
                #         "parameters": {
                #             "type": "object",
                #             "properties": {
                #                 "name": {
                #                     "type": "string",
                #                     "description": "Name of the user",
                #                 },
                #                 "number": {"type": "string", "description": "A random number"},
                #             },
                #             "required": ["name", "number"],
                #         },
                #     }
                # ]
                
                completion = openai.ChatCompletion.create(
                    model="gpt-3.5-turbo",
                    messages=messages,
                    functions = functions,
                    function_call = "auto",
                )
                
                comp = completion.choices[0].message
                print("\nCOMPPP MESSAGE:", comp)

                # if comp.get("function_call"):
                #     function_name = comp["function_call"]["name"]

                #     # Convert JSON string to Python dictionary
                #     data = json.loads(comp)
                    
                #     # Extract values
                #     function_call = data["function_call"]
                #     arguments_str = function_call["arguments"]
                #     arguments_dict = json.loads(arguments_str)
                    
                #     function_response = testing_this(
                #         name=arguments_dict["name"],
                #         number=arguments_dict["number"]
                #     )
                #     print("FUNCTION_RESPONSE:", function_response)
                #     print("ARGUMENTS VALUES:", arguments_dict["number"], arguments_dict["number"])
                #     messages.append(comp)
                #     messages.append({
                #         "role": "function",
                #         "name": function_name,
                #         "content": function_response
                #     })
                #     second_response = openai.ChatCompletion.create(
                #         model="gpt-3.5-turbo",
                #         messages=messages
                #     )
                #     print("YES_FUNCTION_CALL RESPONSE TRY (NO IMAGE)")
                #     return second_response 
                # else:
                #     reply = comp['content']
                #     print("RESPONSE TRY (NO IMAGE, FUNCTION_CALL)")

                if comp.get("function_call"):
                    function_name = comp["function_call"]["name"]
                
                    arguments_str = comp["function_call"]["arguments"]
                    arguments_dict = json.loads(arguments_str)

                    if function_name == "clear_chat_history":
                        function_response = clear_chat_history(
                            command=arguments_dict["command"]
                        )
                        reply = [{"Mode": "Chat", "content": function_response}]
                        return reply
                    elif function_name == "get_total_points":
                        function_response = get_total_points(
                            name=arguments_dict["name"],
                            email=arguments_dict["email"],
                        )
                    elif function_name == "book_enquiry":
                        function_response = book_enquiry(
                            full_name=arguments_dict["full_name"],
                            contact_number=arguments_dict["contact_number"],
                            street_address=arguments_dict["street_address"],
                            landmark=arguments_dict["landmark"],
                            zip_code=arguments_dict["zip_code"],
                            emirate=arguments_dict["emirate"],
                            reason=arguments_dict["reason"]
                        )
                    
                    print("FUNCTION_RESPONSE:", function_response)
                    # print("ARGUMENTS VALUES:", arguments_dict["location"], arguments_dict["unit"])
                    if function_name == "clear_chat_history":
                        print(f"ARGUMENTS VALUES: Command: {arguments_dict['command']}")
                    elif function_name == "show_my_points":
                        print(f"ARGUMENTS VALUES: Name: {arguments_dict['name']}, Email: {arguments_dict['email']}")
                    elif function_name == "book_enquiry":
                        print(f"ARGUMENTS VALUES: Full_name: {arguments_dict['full_name']}, Contact Number: {arguments_dict['contact_number']}, Street Address: {arguments_dict['street_address']}, Landmark: {arguments_dict['landmark']}, Zip Code: {arguments_dict['zip_code']}, Emirate: {arguments_dict['emirate']}, Reason: {arguments_dict['reason']}")

                    # messages.append(comp)
                    # messages.append({
                    #     "role": "function",
                    #     "name": function_name,
                    #     "content": function_response
                    # })
                    second_response = openai.ChatCompletion.create(
                        model="gpt-3.5-turbo",
                        messages=[
                            {"role":"user","content": UserInput},
                            comp,
                            {
                                "role": "function",
                                "name": function_name,
                                "content": function_response
                            }
                        ]
                    )
                    print("YES_FUNCTION_CALL RESPONSE TRY (NO IMAGE)")
                    if second_response is not None:
                        reply = second_response
                        json_res = json.dumps(reply, indent=2)
                        data = json.loads(json_res)
                        reply = data["choices"][0]["message"]["content"]
                        print("REPLYYYYYYY OPENAI: ", reply)
                    else:
                        return "Error"
                else:
                    reply = comp['content']
                    print("RESPONSE TRY (NO IMAGE, FUNCTION_CALL)")

                # reply = comp['content']
                # print("RESPONSE TRY (NO IMAGE)", completion, reply)
            except Exception as e: 
                print("Error",e)
                reply = "Our system is currently under high load. Please clear your history and Try Again!"
            output.append({"Mode": "Chat", "content": reply})

            return output
    else:
        return "Unauthorized"

user_inputs = [
    gr.Textbox(label="Platform", type="text"),
    gr.Textbox(label="User Input", type="text"),
    gr.Textbox(label="Image", type="text"),
    gr.Textbox(label="Textbox2", type="text"),
    gr.Textbox(label="Textbox3", type="password")
]

iface = gr.Interface(
    fn=classify,
    inputs=user_inputs,
    outputs=gr.outputs.JSON(),
    title="Classifier",
)
iface.launch()


# import gradio as gr
# import numpy as np
# import cv2 as cv
# import requests
# import random
# import os
# import tensorflow as tf
# import base64

# host = os.environ.get("host")
# code = os.environ.get("code")
# model_llm = os.environ.get("model")
# content = os.environ.get("content")
# state = os.environ.get("state")
# system = os.environ.get("system")
# auth = os.environ.get("auth")
# auth2 = os.environ.get("auth2")
# data = None

# np.set_printoptions(suppress=True)

# # Load the model outside of the function
# model = tf.keras.models.load_model('keras_model.h5')

# # Load labels from a file
# with open("labels.txt", "r") as file:
#     labels = file.read().splitlines()

# messages = [{"role": "system", "content": system}]

# def classify(platform, UserInput, Images, Textbox2, Textbox3):
#     if Textbox3 == code:
#         imageData = None
#         image_data_url = None  # Initialize image_data_url
#         if Images is not None:
#             output = []
#             headers = {
#                 "Authorization": f"Bearer {auth2}"
#             }
#             if platform == "wh":
#                 get_image = requests.get(Images, headers=headers)
#                 if get_image.status_code == 200:
#                     # Convert the image data to base64
#                     image_base64 = base64.b64encode(get_image.content).decode("utf-8")

#                     # Create a data URL
#                     image_data_url = f"data:image/png;base64,{image_base64}"

#             elif platform == "web":
#                 print("WEB")
#                 # Handle web case if needed
#             else:
#                 pass

#             if image_data_url is not None:
#                 # Load the image from image_data_url
#                 image_data = base64.b64decode(image_base64)
#                 nparr = np.frombuffer(image_data, np.uint8)
#                 image = cv.imdecode(nparr, cv.IMREAD_COLOR)

#                 image = cv.resize(image, (224, 224))
#                 image_array = np.asarray(image)
#                 normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
#                 data[0] = normalized_image_array

#                 prediction = model.predict(data)

#                 max_label_index = None
#                 max_prediction_value = -1

#                 print('Prediction')

#                 Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#                 Textbox2 = Textbox2.split(",")
#                 Textbox2_edited = [x.strip() for x in Textbox2]
#                 Textbox2_edited = list(Textbox2_edited)
#                 Textbox2_edited.append(UserInput)
#                 messages.append({"role": "user", "content": UserInput})

#                 for i, label in enumerate(labels):
#                     prediction_value = float(prediction[0][i])
#                     rounded_value = round(prediction_value, 2)
#                     print(f'{label}: {rounded_value}')

#                     if prediction_value > max_prediction_value:
#                         max_label_index = i
#                         max_prediction_value = prediction_value

#                 if max_label_index is not None:
#                     max_label = labels[max_label_index].split(' ', 1)[1]
#                     max_rounded_prediction = round(max_prediction_value, 2)
#                     print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')

#                     if max_rounded_prediction > 0.5:
#                         print("\nWays to dispose of this waste: " + max_label)
#                         messages.append({"role": "user", "content": content + " " + max_label})

#                         headers = {
#                             "Content-Type": "application/json",
#                             "Authorization": f"Bearer {auth}"
#                         }

#                         response = requests.post(host, headers=headers, json={
#                             "messages": messages,
#                             "model": model_llm
#                         }).json()

#                         reply = response["choices"][0]["message"]["content"]
#                         messages.append({"role": "assistant", "content": reply})

#                         output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
#                     elif max_rounded_prediction < 0.5:
#                         output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})

#                 output.append({"Mode": "Image", "type": "Data URL", "data_url": image_data_url})
#             return output
#         else:
#             output = []

#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(UserInput)

#             for i in Textbox2_edited:
#                 messages.append({"role": "user", "content": i})

#             print("messages after appending:", messages)

#             messages.append({"role": "user", "content": UserInput})

#             headers = {
#                 "Content-Type": "application/json",
#                 "Authorization": f"Bearer {auth}"
#             }

#             response = requests.post(host, headers=headers, json={
#                 "messages": messages,
#                 "model": model_llm
#             }).json()

#             reply = response["choices"][0]["message"]["content"]
#             messages.append({"role": "assistant", "content": reply})

#             output.append({"Mode": "Chat", "content": reply})

#             return output
#     else:
#         return "Unauthorized"

# user_inputs = [
#     gr.Textbox(label="Platform", type="text"),
#     gr.Textbox(label="User Input", type="text"),
#     gr.Textbox(label="Images", type="text"),
#     gr.Textbox(label="Textbox2", type="text"),
#     gr.Textbox(label="Textbox3", type="password")
# ]

# iface = gr.Interface(
#     fn=classify,
#     inputs=user_inputs,
#     outputs=gr.outputs.JSON(),
#     title="Classifier",
# )

# iface.launch()