File size: 18,114 Bytes
58cea02
 
 
 
91e473e
d765ee8
0841c51
 
38d3f0b
0841c51
 
 
 
 
 
 
 
 
 
 
 
 
 
2c1397f
69590e2
0841c51
 
38d3f0b
e13ecee
0841c51
 
58cea02
 
9c7e08b
45a70a9
1748ccd
d18e5a9
8f424e5
0841c51
58cea02
4ad4038
 
 
 
 
 
8e43993
 
d04558f
58cea02
1666aa7
7de18e9
1689df1
7829724
 
d69a1b2
 
7829724
d69a1b2
3b2f6ef
7829724
 
d69a1b2
7829724
8a1f473
7829724
 
 
 
d69a1b2
7829724
a692d2e
1666aa7
0841c51
41768e4
 
 
 
a34bb65
 
e13ecee
a34bb65
 
a692d2e
21f63dc
a692d2e
41768e4
 
 
 
b5afac7
 
41768e4
21f63dc
b5afac7
 
f099cf5
a692d2e
 
 
 
 
 
 
 
 
 
 
 
68d3916
e7e2a49
 
 
a8cf688
 
433ab29
68d3916
 
1854e4d
9f87d22
 
28939d0
9f87d22
1854e4d
28939d0
 
9f87d22
 
 
 
 
28939d0
 
9f87d22
59dc088
 
 
d765ee8
18b59a2
d765ee8
18b59a2
d765ee8
 
59dc088
d765ee8
18b59a2
d765ee8
18b59a2
d765ee8
 
59dc088
3b3771c
 
59dc088
76d511e
 
 
59dc088
16fbcab
6db62f0
f49d54b
16fbcab
1817a5f
 
0d01fa6
6e8cffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19edd8
6e8cffc
 
 
 
 
 
 
 
 
 
 
 
a19edd8
6e8cffc
 
 
a19edd8
 
9da8f46
a19edd8
857c2eb
6e8cffc
 
 
 
 
 
 
 
 
 
 
 
89f3a60
6e8cffc
8f424e5
6e8cffc
81184ae
 
8e02398
81184ae
8e02398
 
81184ae
8e02398
a19edd8
6e8cffc
f0a2361
6e8cffc
9792614
 
81184ae
f0a2361
8e02398
 
 
6e8cffc
 
 
9792614
6e8cffc
 
df8ffd8
6e8cffc
9792614
 
81184ae
f0a2361
8e02398
 
 
6e8cffc
 
 
9792614
6e8cffc
 
1748ccd
6e8cffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f424e5
 
 
 
 
fa28f02
 
8f424e5
 
fa28f02
8f424e5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
from rapidfuzz import process, fuzz
from collections import Counter
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
from datetime import datetime

def init_conn():
        
        uri = st.secrets['mongo_uri']
        client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client['Contest_Information']

        return db
    
def grab_contest_names(db, sport):
    collection = db[f'{sport}_contest_info']
    cursor = collection.find()

    curr_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
    curr_info['Date'] = pd.to_datetime(curr_info['Date'].sort_values(ascending = False))
    curr_info['Date'] = curr_info['Date'].dt.strftime('%Y-%m-%d')
    contest_names = curr_info['Contest Name']
    contest_id_map = dict(zip(curr_info['Contest Name'], curr_info['Contest ID']))
    
    return contest_names, contest_id_map, curr_info

db = init_conn()

## import global functions
from global_func.load_contest_file import load_contest_file
from global_func.create_player_exposures import create_player_exposures
from global_func.create_stack_exposures import create_stack_exposures
from global_func.create_stack_size_exposures import create_stack_size_exposures
from global_func.create_general_exposures import create_general_exposures
from global_func.grab_contest_data import grab_contest_data

def is_valid_input(file):
    if isinstance(file, pd.DataFrame):
        return not file.empty
    else:
        return file is not None  # For Streamlit uploader objects

player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}

tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"])
with tab1:
    col1, col2 = st.columns(2)

    with col1:
        if st.button('Clear data', key='reset1'):
            st.session_state.clear()
        search_options, sport_options, date_options, game_options = st.columns(4)
        with search_options:
            parse_type = st.selectbox("Manual upload or DB search?", ['DB Search', 'Manual'], key='parse_type')
        with sport_options:
            sport_select = st.selectbox("Select Sport", ['MLB', 'MMA', 'GOLF'], key='sport_select')
            contest_names, contest_id_map, curr_info = grab_contest_names(db, sport_select)
            
        with date_options:
            date_list = curr_info['Date'].sort_values(ascending=False).unique()
            date_list = date_list[date_list != pd.Timestamp.today().strftime('%Y-%m-%d')]
            date_select = st.selectbox("Select Date", date_list, key='date_select')
            
            name_parse = curr_info[curr_info['Date'] == date_select]['Contest Name'].reset_index(drop=True)
            date_select = date_select.replace('-', '')
        with game_options:
            type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'], key='type_var')

        contest_name_var = st.selectbox("Select Contest to load", name_parse)
        if parse_type == 'DB Search':
            if 'Contest_file_helper' in st.session_state:
                del st.session_state['Contest_file_helper']
            if 'Contest_file' in st.session_state:
                del st.session_state['Contest_file']
            if 'Contest_file' not in st.session_state:
                if st.button('Load Contest Data', key='load_contest_data'):
                    st.session_state['Contest_file'] = grab_contest_data(sport_select, contest_name_var, contest_id_map, date_select)
            else:
                pass
    with col2:
        st.info(f"If you are manually loading and do not have the results CSV for the contest you selected, you can find it here: https://www.draftkings.com/contest/gamecenter/{contest_id_map[contest_name_var]}#/")
        if parse_type == 'Manual':
            if 'Contest_file_helper' in st.session_state:
                del st.session_state['Contest_file_helper']
            if 'Contest_file' in st.session_state:
                del st.session_state['Contest_file']
            if 'Contest_file' not in st.session_state:
                st.session_state['Contest_upload'] = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
                st.session_state['Contest_file'] = pd.read_csv(st.session_state['Contest_upload'])
                st.session_state['Contest_file_helper'] = grab_contest_data(sport_select, contest_name_var, contest_id_map, date_select)
            else:
                pass

    if 'Contest_file' in st.session_state:
        if 'Contest_file_helper' in st.session_state:
            st.table(st.session_state['Contest_file'].head(10))
            st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['salary_df'], st.session_state['team_df'], st.session_state['pos_df'], st.session_state['entry_list'], check_lineups = load_contest_file(st.session_state['Contest_file'], st.session_state['Contest_file_helper'], sport_select)
        else:
            st.table(st.session_state['Contest_file'].head(10))
            st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['salary_df'], st.session_state['team_df'], st.session_state['pos_df'], st.session_state['entry_list'], check_lineups = load_contest_file(st.session_state['Contest_file'], None, sport_select)
        st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
        st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
        if st.session_state['Contest'] is not None:
            st.success('Contest file loaded successfully!')
            st.dataframe(st.session_state['Contest'].head(100))
        
    if 'Contest_file' in st.session_state:
        st.session_state['ownership_dict'] = dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own']))
        st.session_state['actual_dict'] = dict(zip(st.session_state['actual_df']['Player'], st.session_state['actual_df']['FPTS']))
        st.session_state['salary_dict'] = dict(zip(st.session_state['salary_df']['Player'], st.session_state['salary_df']['Salary']))
        st.session_state['team_dict'] = dict(zip(st.session_state['team_df']['Player'], st.session_state['team_df']['Team']))
        st.session_state['pos_dict'] = dict(zip(st.session_state['pos_df']['Player'], st.session_state['pos_df']['Pos']))

with tab2:
    excluded_cols = ['BaseName', 'EntryCount']
    if 'Contest' in st.session_state:
        player_columns = [col for col in st.session_state['Contest'].columns if col not in excluded_cols]
        for col in player_columns:
            st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str)
    
        # Create mapping dictionaries
        map_dict = {
            'pos_map': st.session_state['pos_dict'],
            'team_map': st.session_state['team_dict'],
            'salary_map': st.session_state['salary_dict'],
            'own_map': st.session_state['ownership_dict'],
            'own_percent_rank': dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'].rank(pct=True)))
        }
        # Create a copy of the dataframe for calculations
        working_df = st.session_state['Contest'].copy() 

        if type_var == 'Classic':
            working_df['stack'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row[4:]
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
                axis=1
            )
            working_df['stack_size'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row[4:]
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
                axis=1
            )
            working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
            working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
            working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
            working_df['sorted'] = working_df[player_columns].apply(
                lambda row: ','.join(sorted(row.values)),
                axis=1
            )
            working_df['dupes'] = working_df.groupby('sorted').transform('size')
            working_df = working_df.reset_index()
            working_df['percentile_finish'] = working_df['index'].rank(pct=True)
            working_df['finish'] = working_df['index']
            working_df = working_df.drop(['sorted', 'index'], axis=1)
        st.session_state['field_player_frame'] = create_player_exposures(working_df, player_columns)
        st.session_state['field_stack_frame'] = create_stack_exposures(working_df)

        with st.expander("Info and filters"):
            if st.button('Clear data', key='reset3'):
                st.session_state.clear()
            with st.form(key='filter_form'):
                entry_parse_var = st.selectbox("Do you want to view a specific player(s) or a group of players?", ['All', 'Specific'])
                entry_names = st.multiselect("Select players", options=st.session_state['entry_list'], default=[])
                submitted = st.form_submit_button("Submit")
                if submitted:
                    if 'player_frame' in st.session_state:
                        del st.session_state['player_frame']
                    if 'stack_frame' in st.session_state:
                        del st.session_state['stack_frame']
                    # Apply entry name filter if specific entries are selected
                    if entry_parse_var == 'Specific' and entry_names:
                        working_df = working_df[working_df['BaseName'].isin(entry_names)]
            
        # Initialize pagination in session state if not exists
        if 'current_page' not in st.session_state:
            st.session_state.current_page = 1

        # Calculate total pages
        rows_per_page = 500
        total_rows = len(working_df)
        total_pages = (total_rows + rows_per_page - 1) // rows_per_page

        # Create pagination controls in a single row
        pagination_cols = st.columns([4, 1, 1, 1, 4])
        with pagination_cols[1]:
            if st.button(f"Previous Page"):
                if st.session_state['current_page'] > 1:
                    st.session_state.current_page -= 1
                else:
                    st.session_state.current_page = 1
                    if 'player_frame' in st.session_state:
                        del st.session_state['player_frame']
                    if 'stack_frame' in st.session_state:
                        del st.session_state['stack_frame']

        with pagination_cols[3]:
            if st.button(f"Next Page"):
                st.session_state.current_page += 1
                if 'player_frame' in st.session_state:
                    del st.session_state['player_frame']
                if 'stack_frame' in st.session_state:
                    del st.session_state['stack_frame']

        # Calculate start and end indices for current page
        start_idx = (st.session_state.current_page - 1) * rows_per_page
        end_idx = min((st.session_state.current_page) * rows_per_page, total_rows)
        st.dataframe(
            working_df.iloc[start_idx:end_idx].style
            .background_gradient(axis=0)
            .background_gradient(cmap='RdYlGn')
            .format(precision=2), 
            height=500,
            use_container_width=True,
            hide_index=True
        )

        with st.container():
            tab1, tab2, tab3, tab4 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info', 'General Info'])
            with tab1:
                col1, col2 = st.columns(2)
                with col1:
                    pos_var = st.selectbox("Which position(s) would you like to view?",  ['All', 'Specific'], key='pos_var')
                with col2:
                    if pos_var == 'Specific':
                        pos_select = st.multiselect("Select your position(s)", ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_select')
                    else:
                        pos_select = None

                if entry_parse_var == 'All':

                    st.session_state['player_frame'] = create_player_exposures(working_df, player_columns)
                    hold_frame = st.session_state['player_frame'].copy()
                    hold_frame['Pos'] = hold_frame['Player'].map(map_dict['pos_map'])
                    st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
                    st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
                    if pos_select:
                        position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
                        st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
                    st.dataframe(st.session_state['player_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
                        hide_index=True)
                else:

                    st.session_state['player_frame'] = create_player_exposures(working_df, player_columns, entry_names)
                    hold_frame = st.session_state['player_frame'].copy()
                    hold_frame['Pos'] = hold_frame['Player'].map(map_dict['pos_map'])
                    st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
                    st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
                    if pos_select:
                        position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
                        st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
                    st.dataframe(st.session_state['player_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
                        hide_index=True)
            with tab2:

                if entry_parse_var == 'All':
                    st.session_state['stack_frame'] = create_stack_exposures(working_df)
                    st.dataframe(st.session_state['stack_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                        hide_index=True)
                else:
                    st.session_state['stack_frame'] = create_stack_exposures(working_df, entry_names)
                    st.dataframe(st.session_state['stack_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                        hide_index=True)
            with tab3:
                
                if entry_parse_var == 'All':
                    st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df)
                    st.dataframe(st.session_state['stack_size_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                        hide_index=True)
                else:
                    st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df, entry_names)
                    st.dataframe(st.session_state['stack_size_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                        hide_index=True)
            
            with tab4:
                
                if entry_parse_var == 'All':
                    st.session_state['general_frame'] = create_general_exposures(working_df)
                    st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)
                    
                else:
                    st.session_state['general_frame'] = create_general_exposures(working_df, entry_names)
                    st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)