File size: 29,126 Bytes
58cea02
 
 
 
91e473e
d765ee8
0841c51
 
38d3f0b
0841c51
 
 
 
 
 
 
 
 
910ce9f
 
 
 
 
 
0841c51
 
 
910ce9f
69590e2
e04a121
38d3f0b
e04a121
0841c51
dc9501e
869c271
 
 
48da594
869c271
 
 
 
7365d98
629cb6e
ceb4948
869c271
 
629cb6e
 
 
 
 
869c271
 
 
 
0841c51
58cea02
 
9c7e08b
45a70a9
1748ccd
d18e5a9
8f424e5
0841c51
58cea02
4ad4038
 
 
 
 
 
8e43993
99e552f
8e43993
d04558f
58cea02
1666aa7
7de18e9
1689df1
7829724
 
f543677
d69a1b2
624ddbc
d69a1b2
31c912d
f543677
7f07fe7
 
 
c4642dd
7f07fe7
7829724
d69a1b2
7829724
8a1f473
7829724
c1c18f8
7829724
 
e04a121
7829724
8b08b1a
a692d2e
1666aa7
0841c51
41768e4
 
 
 
a34bb65
 
6e5cc93
996f8cb
a34bb65
 
a692d2e
21f63dc
a692d2e
41768e4
 
 
 
b5afac7
 
6e5cc93
f9e16b0
 
 
 
b5afac7
 
928ec6e
a692d2e
440bba8
a692d2e
 
 
 
 
68d3916
e7e2a49
 
 
5b9c82c
 
 
68d3916
 
1854e4d
9f87d22
 
28939d0
9f87d22
1854e4d
28939d0
 
9f87d22
 
 
 
 
28939d0
 
5d76637
59dc088
 
 
d765ee8
18b59a2
d765ee8
18b59a2
d765ee8
 
59dc088
d765ee8
18b59a2
d765ee8
18b59a2
d765ee8
 
59dc088
3b3771c
 
59dc088
76d511e
 
 
59dc088
99e552f
62a6685
 
 
 
 
 
 
 
 
 
 
 
16fbcab
6db62f0
f49d54b
f56fa41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abd1ae1
 
 
 
 
 
 
 
 
 
 
 
f56fa41
 
 
 
 
 
b36408f
55a782f
 
 
 
 
 
 
b36408f
 
 
 
 
f56fa41
 
 
16fbcab
96d409b
1817a5f
 
0d01fa6
6e8cffc
886a898
 
 
 
6e8cffc
4ac617e
 
fe3cdfc
9d1f51c
4ac617e
5f539f7
 
4ac617e
fe3cdfc
9d1f51c
4ac617e
0b7d1f5
 
4ac617e
dee19f8
 
fe3cdfc
dee19f8
16aefb8
6e8cffc
 
 
 
 
8aaea01
6e8cffc
 
5f539f7
 
0b7d1f5
 
dee19f8
8aaea01
dee19f8
5f539f7
 
6e8cffc
 
 
 
 
 
 
 
 
a19edd8
6e8cffc
 
 
 
 
 
 
 
 
 
 
 
a19edd8
6e8cffc
 
 
a19edd8
 
9da8f46
a19edd8
857c2eb
6e8cffc
 
 
 
 
 
 
 
 
 
 
 
89f3a60
6e8cffc
b36408f
6e8cffc
6594d81
 
 
 
 
8e02398
6594d81
 
 
 
 
 
a19edd8
6e8cffc
f0a2361
6e8cffc
9792614
0406a82
 
 
 
81184ae
f0a2361
8e02398
 
 
6e8cffc
 
 
9792614
6e8cffc
 
df8ffd8
6e8cffc
9792614
8e622a8
 
 
 
81184ae
f0a2361
8e02398
 
 
6e8cffc
 
 
9792614
6e8cffc
 
1748ccd
6e8cffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f424e5
 
 
 
 
fa28f02
 
8f424e5
 
fa28f02
8f424e5
b36408f
d415f18
 
 
 
 
 
 
 
 
 
 
 
 
c4642dd
 
 
 
 
d415f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eabaa7d
d415f18
 
 
 
eabaa7d
d415f18
 
 
 
 
 
 
2ceda65
d415f18
99e552f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
from rapidfuzz import process, fuzz
from collections import Counter
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
from datetime import datetime

def init_conn():
        
        uri = st.secrets['mongo_uri']
        client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client['Contest_Information']

        return db
    
def grab_contest_names(db, sport, type):
    if type == 'Classic':
        db_type = 'reg'
    elif type == 'Showdown':
        db_type = 'sd'
    collection = db[f'{sport}_{db_type}_contest_info']
    cursor = collection.find()

    curr_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
    curr_info['Date'] = pd.to_datetime(curr_info['Contest Date'].sort_values(ascending = False))
    curr_info['Date'] = curr_info['Date'].dt.strftime('%Y-%m-%d')
    contest_names = curr_info['Contest Name'] + ' - ' + curr_info['Date']
    
    return contest_names, curr_info

def grab_contest_player_info(db, sport, type, contest_date, contest_name, contest_id_map):
    if type == 'Classic':
        db_type = 'reg'
    elif type == 'Showdown':
        db_type = 'showdown'
    collection = db[f'{sport}_{db_type}_player_info']
    cursor = collection.find()

    player_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
    player_info = player_info[player_info['Contest Date'] == contest_date]
    player_info = player_info.rename(columns={'Display Name': 'Player'})
    player_info = player_info.sort_values(by='Salary', ascending=True).drop_duplicates(subset='Player', keep='first')

    info_maps = {
        'position_dict': dict(zip(player_info['Player'], player_info['Position'])),
        'salary_dict': dict(zip(player_info['Player'], player_info['Salary'])),
        'team_dict': dict(zip(player_info['Player'], player_info['Team'])),
        'opp_dict': dict(zip(player_info['Player'], player_info['Opp'])),
        'fpts_avg_dict': dict(zip(player_info['Player'], player_info['Avg FPTS']))
    }
    
    return player_info, info_maps

db = init_conn()

## import global functions
from global_func.load_contest_file import load_contest_file
from global_func.create_player_exposures import create_player_exposures
from global_func.create_stack_exposures import create_stack_exposures
from global_func.create_stack_size_exposures import create_stack_size_exposures
from global_func.create_general_exposures import create_general_exposures
from global_func.grab_contest_data import grab_contest_data

def is_valid_input(file):
    if isinstance(file, pd.DataFrame):
        return not file.empty
    else:
        return file is not None  # For Streamlit uploader objects

player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}
dupe_format = {'uniques%': '{:.2%}', 'under_5%': '{:.2%}', 'under_10%': '{:.2%}'}

tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"])
with tab1:
    col1, col2 = st.columns(2)

    with col1:
        if st.button('Clear data', key='reset1'):
            st.session_state.clear()
        search_options, sport_options, date_options = st.columns(3)
        with search_options:
            parse_type = st.selectbox("Manual upload or DB search?", ['Manual', 'DB Search'], key='parse_type')
        with sport_options:
            sport_select = st.selectbox("Select Sport", ['MLB', 'MMA', 'GOLF', 'NBA', 'NHL'], key='sport_select')
            type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'], key='type_var')
            try:
                contest_names, curr_info = grab_contest_names(db, sport_select, type_var)
            except:
                st.error("No contests found for this sport and/or game type")
                st.stop()
            
        with date_options:
            date_list = curr_info['Date'].sort_values(ascending=False).unique()
            date_list = date_list[date_list != pd.Timestamp.today().strftime('%Y-%m-%d')]
            date_select = st.selectbox("Select Date", date_list, key='date_select')
            date_select2 = (pd.to_datetime(date_select) + pd.Timedelta(days=1)).strftime('%Y-%m-%d')
            
            name_parse = curr_info[curr_info['Date'] == date_select]['Contest Name'].reset_index(drop=True)
            contest_id_map = dict(zip(name_parse, curr_info[curr_info['Date'] == date_select]['Contest ID']))
            date_select = date_select.replace('-', '')
            date_select2 = date_select2.replace('-', '')

        contest_name_var = st.selectbox("Select Contest to load", name_parse)
        if parse_type == 'DB Search':
            if 'Contest_file_helper' in st.session_state:
                del st.session_state['Contest_file_helper']
            if 'Contest_file' in st.session_state:
                del st.session_state['Contest_file']
            if 'Contest_file' not in st.session_state:
                if st.button('Load Contest Data', key='load_contest_data'):
                    st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map)
                    st.session_state['Contest_file'] = grab_contest_data(sport_select, contest_name_var, contest_id_map, date_select, date_select2)
            else:
                pass
    with col2:
        st.info(f"If you are manually loading and do not have the results CSV for the contest you selected, you can find it here: https://www.draftkings.com/contest/gamecenter/{contest_id_map[contest_name_var]}#/")
        if parse_type == 'Manual':
            if 'Contest_file_helper' in st.session_state:
                del st.session_state['Contest_file_helper']
            if 'Contest_file' in st.session_state:
                del st.session_state['Contest_file']
            if 'Contest_file' not in st.session_state:
                st.session_state['Contest_upload'] = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
                st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map)
                try:
                    st.session_state['Contest_file'] = pd.read_csv(st.session_state['Contest_upload'])
                except:
                    st.warning('Please upload a Contest CSV')
            else:
                pass

    if 'Contest_file' in st.session_state:
        st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['entry_list'], check_lineups = load_contest_file(st.session_state['Contest_file'], type_var, st.session_state['player_info'], sport_select)
        st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
        st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
        if st.session_state['Contest'] is not None:
            st.success('Contest file loaded successfully!')
            st.dataframe(st.session_state['Contest'].head(100))
        
    if 'Contest_file' in st.session_state:
        st.session_state['ownership_dict'] = dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own']))
        st.session_state['actual_dict'] = dict(zip(st.session_state['actual_df']['Player'], st.session_state['actual_df']['FPTS']))
        st.session_state['salary_dict'] = st.session_state['info_maps']['salary_dict']
        st.session_state['team_dict'] = st.session_state['info_maps']['team_dict']
        st.session_state['pos_dict'] = st.session_state['info_maps']['position_dict']

with tab2:
    excluded_cols = ['BaseName', 'EntryCount']
    if 'Contest' in st.session_state:
        player_columns = [col for col in st.session_state['Contest'].columns if col not in excluded_cols]
        for col in player_columns:
            st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str)
    
        # Create mapping dictionaries
        map_dict = {
            'pos_map': st.session_state['pos_dict'],
            'team_map': st.session_state['team_dict'],
            'salary_map': st.session_state['salary_dict'],
            'own_map': st.session_state['ownership_dict'],
            'own_percent_rank': dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'].rank(pct=True)))
        }
        # Create a copy of the dataframe for calculations
        working_df = st.session_state['Contest'].copy()

        if type_var == 'Classic':
            working_df['stack'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row[4:]
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
                axis=1
            )
            working_df['stack_size'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row[4:]
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
                axis=1
            )
            working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
            working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
            working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
            working_df['sorted'] = working_df[player_columns].apply(
                lambda row: ','.join(sorted(row.values)),
                axis=1
            )
            working_df['dupes'] = working_df.groupby('sorted').transform('size')

            working_df['uniques'] = working_df.groupby('BaseName').apply(
                lambda x: (x['dupes'] == 1).sum()
            ).reindex(working_df['BaseName']).values

            working_df['under_5'] = working_df.groupby('BaseName').apply(
                lambda x: (x['dupes'] <= 5).sum()
            ).reindex(working_df['BaseName']).values

            working_df['under_10'] = working_df.groupby('BaseName').apply(
                lambda x: (x['dupes'] <= 10).sum()
            ).reindex(working_df['BaseName']).values

            working_df = working_df.reset_index()
            working_df['percentile_finish'] = working_df['index'].rank(pct=True)
            working_df['finish'] = working_df['index']
            working_df = working_df.drop(['sorted', 'index'], axis=1)
        
        elif type_var == 'Showdown':
            working_df['stack'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row[2:]
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[2:]) else '',
                axis=1
            )
            working_df['stack_size'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row[2:]
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[2:]) else '',
                axis=1
            )
            # Modified salary calculation with 1.5x multiplier for first player
            working_df['salary'] = working_df.apply(
                lambda row: (map_dict['salary_map'].get(row[2], 0) * 1.5) + 
                           sum(map_dict['salary_map'].get(player, 0) for player in row[3:]),
                axis=1
            )
            # Modified actual_fpts calculation with 1.5x multiplier for first player
            working_df['actual_fpts'] = working_df.apply(
                lambda row: (st.session_state['actual_dict'].get(row[2], 0) * 1.5) + 
                           sum(st.session_state['actual_dict'].get(player, 0) for player in row[3:]),
                axis=1
            )
            working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
            working_df['sorted'] = working_df[player_columns].apply(
                lambda row: ','.join(sorted(row.values)),
                axis=1
            )
            working_df['dupes'] = working_df.groupby('sorted').transform('size')

            working_df['uniques'] = working_df.groupby('BaseName').apply(
                lambda x: (x['dupes'] == 1).sum()
            ).reindex(working_df['BaseName']).values

            working_df['under_5'] = working_df.groupby('BaseName').apply(
                lambda x: (x['dupes'] <= 5).sum()
            ).reindex(working_df['BaseName']).values

            working_df['under_10'] = working_df.groupby('BaseName').apply(
                lambda x: (x['dupes'] <= 10).sum()
            ).reindex(working_df['BaseName']).values

            working_df = working_df.reset_index()
            working_df['percentile_finish'] = working_df['index'].rank(pct=True)
            working_df['finish'] = working_df['index']
            working_df = working_df.drop(['sorted', 'index'], axis=1)
        # working_df['stack_size'] = working_df['stack_size'].fillna(1).astype(int)
        st.session_state['field_player_frame'] = create_player_exposures(working_df, player_columns)
        st.session_state['field_stack_frame'] = create_stack_exposures(working_df)

        with st.expander("Info and filters"):
            st.info("Note that any filtering here needs to be reset manually, i.e. if you parse down the specific users and want to reset the table, just backtrack your filtering by setting it back to 'All'")
            if st.button('Clear data', key='reset3'):
                st.session_state.clear()

            with st.form(key='filter_form'):
                users_var, entries_var, stack_var, stack_size_var, player_var = st.columns(5)
                with users_var:
                    entry_parse_var = st.selectbox("Do you want to view a specific user(s)?", ['All', 'Specific'], key = 'entry_parse_var')
                    entry_names = st.multiselect("Select players", options=st.session_state['entry_list'], default=[], key = 'entry_names')
                with entries_var:
                    low_entries_var = st.number_input("Low end of entries range", min_value=0, max_value=150, value=1, key = 'low_entries_var')
                    high_entries_var = st.number_input("High end of entries range", min_value=0, max_value=150, value=150, key = 'high_entries_var')
                with stack_var:
                    stack_parse_var = st.selectbox("Do you want to view lineups with specific team(s)?", ['All', 'Specific'], key = 'stack_parse_var')
                    stack_names = st.multiselect("Select teams", options=working_df['stack'].unique(), default=[], key = 'stack_names')
                with stack_size_var:
                    stack_size_parse_var = st.selectbox("Do you want to view a specific stack size(s)?", ['All', 'Specific'], key = 'stack_size_parse_var')
                    stack_size_names = st.multiselect("Select stack sizes", options=working_df['stack_size'].unique(), default=[], key = 'stack_size_names')
                with player_var:
                    unique_players = pd.unique(working_df[player_columns].values.ravel('K'))
                    unique_players = [p for p in unique_players if p != 'nan']  # Remove any NaN values
                    player_parse_var = st.selectbox("Do you want to view lineups with specific player(s)?", ['All', 'Specific'], key = 'player_parse_var')
                    player_names = st.multiselect("Select players", options=unique_players, default=[], key = 'player_names')
                submitted = st.form_submit_button("Submit")
                if submitted:
                    if 'player_frame' in st.session_state:
                        del st.session_state['player_frame']
                    if 'stack_frame' in st.session_state:
                        del st.session_state['stack_frame']

                    if entry_parse_var == 'Specific' and entry_names:
                        working_df = working_df[working_df['BaseName'].isin(entry_names)]
                    if stack_parse_var == 'Specific' and stack_names:
                        working_df = working_df[working_df['stack'].isin(stack_names)]
                    if stack_size_parse_var == 'Specific' and stack_size_names:
                        working_df = working_df[working_df['stack_size'].isin(stack_size_names)]
                    if player_parse_var == 'Specific' and player_names:
                        mask = working_df[player_columns].apply(lambda row: all(player in row.values for player in player_names), axis=1)
                        working_df = working_df[mask]
                    if low_entries_var and high_entries_var:
                        working_df = working_df[working_df['EntryCount'].between(low_entries_var, high_entries_var)]
            
        # Initialize pagination in session state if not exists
        if 'current_page' not in st.session_state:
            st.session_state.current_page = 1

        # Calculate total pages
        rows_per_page = 500
        total_rows = len(working_df)
        total_pages = (total_rows + rows_per_page - 1) // rows_per_page

        # Create pagination controls in a single row
        pagination_cols = st.columns([4, 1, 1, 1, 4])
        with pagination_cols[1]:
            if st.button(f"Previous Page"):
                if st.session_state['current_page'] > 1:
                    st.session_state.current_page -= 1
                else:
                    st.session_state.current_page = 1
                    if 'player_frame' in st.session_state:
                        del st.session_state['player_frame']
                    if 'stack_frame' in st.session_state:
                        del st.session_state['stack_frame']

        with pagination_cols[3]:
            if st.button(f"Next Page"):
                st.session_state.current_page += 1
                if 'player_frame' in st.session_state:
                    del st.session_state['player_frame']
                if 'stack_frame' in st.session_state:
                    del st.session_state['stack_frame']

        # Calculate start and end indices for current page
        start_idx = (st.session_state.current_page - 1) * rows_per_page
        end_idx = min((st.session_state.current_page) * rows_per_page, total_rows)
        st.dataframe(
            working_df.iloc[start_idx:end_idx].style
            .background_gradient(axis=0)
            .background_gradient(cmap='RdYlGn')
            .format(precision=2), 
            height=500,
            use_container_width=True,
            hide_index=True
        )

        with st.container():
            tab1, tab2, tab3, tab4, tab5 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info', 'General Info', 'Duplication Info'])
            with tab1:
                with st.form(key='player_info_pos_form'):
                    col1, col2 = st.columns(2)
                    with col1:
                        pos_var = st.selectbox("Which position(s) would you like to view?",  ['All', 'Specific'], key='pos_var')
                    with col2:
                        pos_select = st.multiselect("Select your position(s)", ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_select')
                    submitted = st.form_submit_button("Submit")
                    if submitted:
                        if pos_var == 'Specific':
                            pos_select = pos_select
                        else:
                            pos_select = None

                if entry_parse_var == 'All':

                    st.session_state['player_frame'] = create_player_exposures(working_df, player_columns)
                    hold_frame = st.session_state['player_frame'].copy()
                    if sport_select == 'GOLF':
                        hold_frame['Pos'] = 'G'
                    else:
                        hold_frame['Pos'] = hold_frame['Player'].map(map_dict['pos_map'])
                    st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
                    st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
                    if pos_select:
                        position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
                        st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
                    st.dataframe(st.session_state['player_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
                        hide_index=True)
                else:

                    st.session_state['player_frame'] = create_player_exposures(working_df, player_columns, entry_names)
                    hold_frame = st.session_state['player_frame'].copy()
                    if sport_select == 'GOLF':
                        hold_frame['Pos'] = 'G'
                    else:
                        hold_frame['Pos'] = hold_frame['Player'].map(map_dict['pos_map'])
                    st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
                    st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
                    if pos_select:
                        position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
                        st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
                    st.dataframe(st.session_state['player_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
                        hide_index=True)
            with tab2:

                if entry_parse_var == 'All':
                    st.session_state['stack_frame'] = create_stack_exposures(working_df)
                    st.dataframe(st.session_state['stack_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                        hide_index=True)
                else:
                    st.session_state['stack_frame'] = create_stack_exposures(working_df, entry_names)
                    st.dataframe(st.session_state['stack_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                        hide_index=True)
            with tab3:
                
                if entry_parse_var == 'All':
                    st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df)
                    st.dataframe(st.session_state['stack_size_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                        hide_index=True)
                else:
                    st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df, entry_names)
                    st.dataframe(st.session_state['stack_size_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
                        hide_index=True)
            
            with tab4:
                
                if entry_parse_var == 'All':
                    st.session_state['general_frame'] = create_general_exposures(working_df)
                    st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)
                    
                else:
                    st.session_state['general_frame'] = create_general_exposures(working_df, entry_names)
                    st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)

            with tab5:
                with st.form(key='dupe_form'):
                    col1, col2 = st.columns(2)
                    with col1:
                        user_dupe_var = st.selectbox("Which usage(s) would you like to view?",  ['All', 'Specific'], key='user_dupe_var')
                    with col2:
                        user_dupe_select = st.multiselect("Select your user(s)", working_df['BaseName'].sort_values().unique(), key='user_dupe_select')
                    submitted = st.form_submit_button("Submit")
                    if submitted:
                        if user_dupe_var == 'Specific':
                            user_dupe_select = user_dupe_select
                        else:
                            user_dupe_select = None
                
                dupe_frame = working_df[['BaseName', 'EntryCount', 'dupes', 'uniques', 'under_5', 'under_10']]
                dupe_frame['average_dupes'] = dupe_frame['dupes'].mean()
                dupe_frame['uniques%'] = dupe_frame['uniques'] / dupe_frame['EntryCount']
                dupe_frame['under_5%'] = dupe_frame['under_5'] / dupe_frame['EntryCount']
                dupe_frame['under_10%'] = dupe_frame['under_10'] / dupe_frame['EntryCount']
                dupe_frame = dupe_frame[['BaseName', 'EntryCount', 'average_dupes', 'uniques', 'uniques%', 'under_5', 'under_5%', 'under_10', 'under_10%']].drop_duplicates(subset='BaseName', keep='first')
                st.session_state['duplication_frame'] = dupe_frame.sort_values(by='EntryCount', ascending=False)
                if user_dupe_var == 'Specific':
                    st.session_state['duplication_frame'] = st.session_state['duplication_frame'][st.session_state['duplication_frame']['BaseName'].isin(user_dupe_select)]
                
                # Initialize pagination in session state if not exists
                if 'dupe_page' not in st.session_state:
                    st.session_state.dupe_page = 1

                # Calculate total pages
                rows_per_page = 50
                total_rows = len(st.session_state['duplication_frame'])
                total_pages = (total_rows + rows_per_page - 1) // rows_per_page

                # Create pagination controls in a single row
                pagination_cols = st.columns([4, 1, 1, 1, 4])
                with pagination_cols[1]:
                    if st.button(f"Previous Dupes Page"):
                        if st.session_state['dupe_page'] > 1:
                            st.session_state.dupe_page -= 1

                with pagination_cols[3]:
                    if st.button(f"Next Dupes Page"):
                        st.session_state.dupe_page += 1

                # Calculate start and end indices for current page
                start_dupe_idx = (st.session_state.dupe_page - 1) * rows_per_page
                end_dupe_idx = min((st.session_state.dupe_page) * rows_per_page, total_rows)

                st.dataframe(st.session_state['duplication_frame'].iloc[start_dupe_idx:end_dupe_idx].style.
                             background_gradient(cmap='RdYlGn', subset=['uniques%', 'under_5%', 'under_10%'], axis=0).
                             background_gradient(cmap='RdYlGn', subset=['uniques', 'under_5', 'under_10'], axis=0).
                             format(dupe_format, precision=2), hide_index=True)