File size: 62,851 Bytes
4036c64
6ef6fac
 
 
 
6a6dae7
b41a4e7
6a6dae7
 
6ef6fac
4036c64
 
b647ce4
 
 
 
a47b0a6
6ef6fac
a47b0a6
6a6dae7
a47b0a6
b647ce4
55016b9
 
 
 
 
 
 
 
 
6ef6fac
9990caa
5ae652c
96799c9
 
 
 
 
 
 
 
 
 
 
3dbcf03
96799c9
 
 
 
 
 
 
 
 
 
3dbcf03
96799c9
 
 
 
3dbcf03
96799c9
 
 
 
ff22721
a47b0a6
 
 
 
 
f4dd7c9
 
 
6e328e4
 
 
 
 
 
6ef6fac
 
4036c64
 
a47b0a6
 
 
 
f4dd7c9
 
 
6e328e4
 
 
 
 
 
6ef6fac
 
4036c64
5b35c1a
a47b0a6
 
 
 
f4dd7c9
 
 
6e328e4
 
 
 
 
 
765743d
 
 
 
a47b0a6
 
 
 
f4dd7c9
 
 
6e328e4
 
 
 
 
 
765743d
 
 
6a6dae7
a47b0a6
 
 
 
b5abcc5
 
 
 
4d8dc24
6317102
4d8dc24
b5abcc5
 
 
e559e56
 
34a05eb
9128800
b5abcc5
621bd03
 
a47b0a6
 
 
 
f4dd7c9
 
 
9f6bb94
 
 
 
 
 
 
6317102
5b35c1a
 
 
6ef6fac
53152e8
02183a0
e559e56
6ef6fac
ff22721
55016b9
a67075a
2675c26
55016b9
 
 
 
2675c26
 
 
55016b9
 
 
 
 
2675c26
 
55016b9
 
 
 
2675c26
 
 
55016b9
 
 
 
 
2675c26
 
 
 
 
 
 
 
 
 
b647ce4
55016b9
 
 
 
 
 
 
a67075a
 
02183a0
b647ce4
 
 
ff22721
55016b9
2675c26
 
55016b9
 
 
 
2675c26
55016b9
 
 
 
2675c26
 
 
1086fd6
b647ce4
2675c26
 
 
 
 
 
 
55016b9
2675c26
 
55016b9
 
 
 
2675c26
 
 
 
55016b9
 
 
 
2675c26
 
55016b9
 
 
 
2675c26
 
 
 
55016b9
 
 
 
2675c26
 
 
 
 
 
 
 
 
 
b647ce4
55016b9
 
 
 
 
 
a67075a
 
02183a0
b647ce4
 
 
2675c26
55016b9
2675c26
 
55016b9
 
 
 
2675c26
55016b9
 
 
 
2675c26
 
 
1086fd6
2675c26
 
 
 
 
 
 
b41a4e7
 
 
 
 
 
 
 
 
 
6ef6fac
b41a4e7
 
 
 
 
6ef6fac
b647ce4
 
 
b41a4e7
 
 
 
 
b647ce4
81a398d
 
 
b41a4e7
 
 
 
 
81a398d
82b17d9
3d72ea9
b5abcc5
 
e559e56
 
 
55016b9
 
 
 
 
 
 
 
 
 
6887e0b
767e1e6
0ad72bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ef6fac
0ad72bc
767e1e6
20f53c3
9c3aa05
 
 
 
a47b0a6
9c3aa05
f799298
20f53c3
 
9c3aa05
 
 
 
 
 
 
 
 
 
 
 
 
 
20f53c3
9c3aa05
 
 
 
 
 
 
 
 
 
 
 
 
 
20f53c3
9c3aa05
20f53c3
 
 
 
 
96799c9
20f53c3
 
 
095a174
20f53c3
095a174
ac9b445
 
 
 
3f36e0d
ac9b445
 
 
 
822a6cd
d3a2a85
 
 
ac9b445
83d45be
f47294a
e48ec28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25d03a1
40212a7
 
 
 
 
 
 
ac9b445
e48ec28
25d03a1
53152e8
dc913ed
 
 
82b17d9
b5abcc5
 
 
e559e56
 
55016b9
 
 
 
 
 
 
 
 
dc913ed
 
 
 
e04cb99
66b0ac2
55016b9
9c3aa05
55016b9
9c3aa05
55016b9
9c3aa05
 
 
55016b9
 
 
 
9c3aa05
55016b9
 
 
 
66b0ac2
 
 
 
 
 
 
9c3aa05
 
55016b9
 
 
 
9c3aa05
55016b9
 
 
 
66b0ac2
 
 
 
 
 
e04cb99
 
 
 
 
 
 
81a398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf4ffa6
 
 
81a398d
bf4ffa6
81a398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
023a185
81a398d
 
 
 
 
023a185
81a398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf4ffa6
 
 
 
 
81a398d
 
 
 
 
bf4ffa6
 
 
023a185
81a398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
023a185
81a398d
 
 
 
 
023a185
81a398d
 
 
b5abcc5
3d97c49
9c3aa05
66b0ac2
 
48ec8ac
66b0ac2
b647ce4
0ed806a
72c894a
735eb51
66b0ac2
72c894a
9c3aa05
72c894a
9c3aa05
66b0ac2
48ec8ac
66b0ac2
b647ce4
0ed806a
9c3aa05
0ed806a
9c3aa05
66b0ac2
 
9c3aa05
66b0ac2
 
 
 
 
0ed806a
66b0ac2
735eb51
66b0ac2
72c894a
9c3aa05
72c894a
9c3aa05
66b0ac2
 
 
 
0ed806a
9c3aa05
0ed806a
9c3aa05
66b0ac2
b0517d0
66b0ac2
9c3aa05
72c894a
 
 
 
16a2718
93bcf76
9c3aa05
72c894a
 
 
 
16a2718
93bcf76
a819472
66b0ac2
 
 
 
9c3aa05
 
55016b9
 
 
 
9c3aa05
55016b9
 
 
 
9c3aa05
 
55016b9
 
 
 
9c3aa05
55016b9
 
 
 
66b0ac2
 
 
 
 
 
 
 
 
 
 
 
9c3aa05
 
55016b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3aa05
55016b9
 
 
 
02d2bcd
 
 
 
 
 
55016b9
 
 
 
 
 
02d2bcd
 
 
 
55016b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc8cc73
9c3aa05
 
55016b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc8cc73
55016b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3aa05
55016b9
 
 
 
02d2bcd
 
 
 
 
 
55016b9
 
 
 
 
 
02d2bcd
 
 
 
55016b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66b0ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3aa05
55016b9
9c3aa05
55016b9
9c3aa05
55016b9
 
9c3aa05
55016b9
9c3aa05
55016b9
9c3aa05
55016b9
9c3aa05
55016b9
9c3aa05
55016b9
 
9c3aa05
55016b9
9c3aa05
55016b9
 
66b0ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2bcd1
9c3aa05
55016b9
9c3aa05
55016b9
9c3aa05
55016b9
 
9c3aa05
55016b9
9c3aa05
55016b9
9c3aa05
55016b9
9c3aa05
55016b9
9c3aa05
55016b9
 
9c3aa05
55016b9
9c3aa05
55016b9
4336d9e
66b0ac2
 
 
4336d9e
66b0ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
import streamlit as st
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo
import unicodedata

st.set_page_config(layout="wide")

@st.cache_resource
def init_conn():

        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["NBA_DFS"]
        wnba_db = client["WNBA_DFS"]

        return db, wnba_db
    
db, wnba_db = init_conn()

dk_nba_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
dk_nba_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_nba_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_nba_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']

dk_wnba_columns = ['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
dk_wnba_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_wnba_columns = ['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_wnba_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']

roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}

st.markdown("""
<style>
    /* Tab styling */
    .stTabs [data-baseweb="tab-list"] {
        gap: 8px;
        padding: 4px;
    }

    .stTabs [data-baseweb="tab"] {
        height: 50px;
        white-space: pre-wrap;
        background-color: #DAA520;
        color: white;
        border-radius: 10px;
        gap: 1px;
        padding: 10px 20px;
        font-weight: bold;
        transition: all 0.3s ease;
    }

    .stTabs [aria-selected="true"] {
        background-color: #DAA520;
        border: 3px solid #FFD700;
        color: white;
    }

    .stTabs [data-baseweb="tab"]:hover {
        background-color: #FFD700;
        cursor: pointer;
    }
</style>""", unsafe_allow_html=True)

@st.cache_data(ttl=60)
def load_overall_stats(league: str):
    if league == 'NBA':
        collection = db["DK_Player_Stats"] 
    elif league == 'WNBA':
        collection = wnba_db["DK_Player_Stats"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    if league == 'NBA':
        raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
                                'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
        raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
    elif league == 'WNBA':
        raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "DK_Proj": "Median", "DK_ID": "ID", "DK_Pos": "Position", "DK_Salary": "Salary", "DK_Own": "Own"})
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    dk_raw = raw_display.sort_values(by='Median', ascending=False)
    
    if league == 'NBA':
        collection = db["FD_Player_Stats"] 
    elif league == 'WNBA':
        collection = wnba_db["FD_Player_Stats"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    if league == 'NBA':
        raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
                                'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
        raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
    elif league == 'WNBA':
        raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "FD_Proj": "Median", "FD_ID": "ID", "FD_Pos": "Position", "FD_Salary": "Salary", "FD_Own": "Own"})
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    fd_raw = raw_display.sort_values(by='Median', ascending=False)
    
    if league == 'NBA':
        collection = db["Secondary_DK_Player_Stats"] 
    elif league == 'WNBA':
        collection = wnba_db["Secondary_DK_Player_Stats"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    if league == 'NBA':
        raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
                                'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
        raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
    elif league == 'WNBA':
        raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "DK_Proj": "Median", "DK_ID": "ID", "DK_Pos": "Position", "DK_Salary": "Salary", "DK_Own": "Own"})
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
    
    if league == 'NBA':
        collection = db["Secondary_FD_Player_Stats"] 
    elif league == 'WNBA':
        collection = wnba_db["Secondary_FD_Player_Stats"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    if league == 'NBA':
        raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
                                'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
        raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
    elif league == 'WNBA':
        raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "FD_Proj": "Median", "FD_ID": "ID", "FD_Pos": "Position", "FD_Salary": "Salary", "FD_Own": "Own"})
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)

    if league == 'NBA':
        collection = db["Player_SD_Range_Of_Outcomes"] 
    elif league == 'WNBA':
        collection = wnba_db["Player_SD_Range_Of_Outcomes"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
                               'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
    raw_display['Median'] = raw_display['Median'].replace('', 0).astype(float)
    raw_display = raw_display.rename(columns={"player_id": "player_ID"})
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    sd_raw = raw_display.sort_values(by='Median', ascending=False)
    dk_sd_raw = sd_raw[sd_raw['site'] == 'Draftkings']
    fd_sd_raw = sd_raw[sd_raw['site'] == 'Fanduel']
    fd_sd_raw['player_ID'] = fd_sd_raw['player_ID'].astype(str)
    fd_sd_raw['player_ID'] = fd_sd_raw['player_ID'].str.rsplit('-', n=1).str[0].astype(str)

    print(sd_raw.head(10))

    if league == 'NBA':
        collection = db["Player_Range_Of_Outcomes"] 
    elif league == 'WNBA':
        collection = wnba_db["Player_Range_Of_Outcomes"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    try:
        raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
                                'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_ID']]
    except:
        raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
                                'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
        raw_display = raw_display.rename(columns={"player_id": "player_ID"})
    raw_display['Median'] = raw_display['Median'].replace('', 0).astype(float)
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    roo_raw = raw_display.sort_values(by='Median', ascending=False)

    timestamp = raw_display['timestamp'].values[0]
    
    return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp

@st.cache_data(ttl = 60)
def init_DK_lineups(slate_desig: str, league: str):  
        
        if slate_desig == 'Main Slate':
            if league == 'NBA':
                collection = db['DK_NBA_name_map']
            elif league == 'WNBA':
                collection = wnba_db['DK_WNBA_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))

            if league == 'NBA':
                collection = db["DK_NBA_seed_frame"] 
            elif league == 'WNBA':
                collection = wnba_db["DK_WNBA_seed_frame"] 
            cursor = collection.find().limit(10000)
        elif slate_desig == 'Secondary':
            if league == 'NBA':
                collection = db['DK_NBA_Secondary_name_map']
            elif league == 'WNBA':
                collection = wnba_db['DK_WNBA_Secondary_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))

            if league == 'NBA':
                collection = db["DK_NBA_Secondary_seed_frame"] 
            elif league == 'WNBA':
                collection = wnba_db["DK_WNBA_Secondary_seed_frame"] 
            cursor = collection.find().limit(10000)
        elif slate_desig == 'Auxiliary':
            collection = db['DK_NBA_Auxiliary_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))
        
            collection = db["DK_NBA_Auxiliary_seed_frame"] 
            cursor = collection.find().limit(10000) 

        raw_display = pd.DataFrame(list(cursor))
        if league == 'NBA':
            raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
            dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
        elif league == 'WNBA':
            raw_display = raw_display[['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
            dict_columns = ['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL']

        for col in dict_columns:
            raw_display[col] = raw_display[col].map(names_dict)
        DK_seed = raw_display.to_numpy()

        return DK_seed

@st.cache_data(ttl = 60)
def init_DK_SD_lineups(slate_desig: str, league: str):

        if slate_desig == 'Main Slate':
            if league == 'NBA':
                collection = db["DK_NBA_SD_seed_frame"] 
            elif league == 'WNBA':
                collection = wnba_db["DK_WNBA_SD_seed_frame"] 
        elif slate_desig == 'Secondary':
            if league == 'NBA':
                collection = db["DK_NBA_Secondary_SD_seed_frame"] 
            elif league == 'WNBA':
                collection = wnba_db["DK_WNBA_Secondary_SD_seed_frame"] 
        elif slate_desig == 'Auxiliary':
            collection = db["DK_NBA_Auxiliary_SD_seed_frame"] 

        cursor = collection.find({"Team_count": {"$lt": 6}}).limit(10000)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        DK_seed = raw_display.to_numpy()

        return DK_seed

@st.cache_data(ttl = 60)
def init_FD_lineups(slate_desig: str, league: str):  
        
        if slate_desig == 'Main Slate':
            if league == 'NBA':
                collection = db['FD_NBA_name_map']
            elif league == 'WNBA':
                collection = wnba_db['FD_WNBA_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))
        
            if league == 'NBA':
                collection = db["FD_NBA_seed_frame"] 
            elif league == 'WNBA':
                collection = wnba_db["FD_WNBA_seed_frame"] 
            cursor = collection.find().limit(10000)
        elif slate_desig == 'Secondary':
            if league == 'NBA':
                collection = db['FD_NBA_Secondary_name_map']
            elif league == 'WNBA':
                collection = wnba_db['FD_WNBA_Secondary_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))
        
            if league == 'NBA':
                collection = db["FD_NBA_Secondary_seed_frame"] 
            elif league == 'WNBA':
                collection = wnba_db["FD_WNBA_Secondary_seed_frame"] 
            cursor = collection.find().limit(10000)
        elif slate_desig == 'Auxiliary':
            collection = db['FD_NBA_Auxiliary_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))
        
            collection = db["FD_NBA_Auxiliary_seed_frame"] 
            cursor = collection.find().limit(10000) 
    
        raw_display = pd.DataFrame(list(cursor))
        if league == 'NBA':
            raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
            dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
        elif league == 'WNBA':
            raw_display = raw_display[['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
            dict_columns = ['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4']
        for col in dict_columns:
            raw_display[col] = raw_display[col].map(names_dict)
        FD_seed = raw_display.to_numpy()

        return FD_seed

@st.cache_data(ttl = 60)
def init_FD_SD_lineups(slate_desig: str, league: str):

        if slate_desig == 'Main Slate':
            if league == 'NBA':
                collection = db["FD_NBA_SD_seed_frame"] 
            elif league == 'WNBA':
                collection = wnba_db["FD_WNBA_SD_seed_frame"] 
        elif slate_desig == 'Secondary':
            if league == 'NBA':
                collection = db["FD_NBA_Secondary_SD_seed_frame"] 
            elif league == 'WNBA':
                collection = wnba_db["FD_WNBA_Secondary_SD_seed_frame"] 
        elif slate_desig == 'Auxiliary':
            collection = db["FD_NBA_Auxiliary_SD_seed_frame"] 

        cursor = collection.find({"Team_count": {"$lt": 6}}).limit(10000)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        DK_seed = raw_display.to_numpy()

        return DK_seed

def normalize_special_characters(text):
    """Convert accented characters to their ASCII equivalents"""
    if pd.isna(text):
        return text
    # Normalize unicode characters to their closest ASCII equivalents
    normalized = unicodedata.normalize('NFKD', str(text))
    # Remove diacritics (accents, umlauts, etc.)
    ascii_text = ''.join(c for c in normalized if not unicodedata.combining(c))
    return ascii_text

def convert_df_to_csv(df):
    df_clean = df.copy()
    for col in df_clean.columns:
        if df_clean[col].dtype == 'object':
            df_clean[col] = df_clean[col].apply(normalize_special_characters)
    return df_clean.to_csv(index=False).encode('utf-8')

@st.cache_data
def convert_df(array):
    array = pd.DataFrame(array, columns=column_names)
    # Normalize special characters in the dataframe before export
    for col in array.columns:
        if array[col].dtype == 'object':
            array[col] = array[col].apply(normalize_special_characters)
    return array.to_csv(index=False).encode('utf-8')

@st.cache_data
def convert_pm_df(array):
    array = pd.DataFrame(array)
    # Normalize special characters in the dataframe before export
    for col in array.columns:
        if array[col].dtype == 'object':
            array[col] = array[col].apply(normalize_special_characters)
    return array.to_csv(index=False).encode('utf-8')

dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats('NBA')
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
dk_id_dict_sd = dict(zip(dk_sd_raw.Player, dk_sd_raw.player_ID))
fd_id_dict_sd = dict(zip(fd_sd_raw.Player, fd_sd_raw.player_ID))

dk_nba_lineups = pd.DataFrame(columns=dk_nba_columns)
dk_nba_sd_lineups = pd.DataFrame(columns=dk_nba_sd_columns)
fd_nba_lineups = pd.DataFrame(columns=fd_nba_columns)
fd_nba_sd_lineups = pd.DataFrame(columns=fd_nba_sd_columns)

dk_wnba_lineups = pd.DataFrame(columns=dk_wnba_columns)
dk_wnba_sd_lineups = pd.DataFrame(columns=dk_wnba_sd_columns)
fd_wnba_lineups = pd.DataFrame(columns=fd_wnba_columns)
fd_wnba_sd_lineups = pd.DataFrame(columns=fd_wnba_sd_columns)

t_stamp = f"Last Update: " + str(timestamp) + f" CST"

with st.container():
    st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
reset_col, view_col, site_col, league_col = st.columns(4)
with reset_col:
    # First row - timestamp and reset button
    col1, col2 = st.columns([3, 3])
    with col1:
        st.info(t_stamp)
    with col2:
        if st.button("Load/Reset Data", key='reset1'):
            st.cache_data.clear()
            dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats('NBA')
            salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
            id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
            salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
            dk_id_dict_sd = dict(zip(dk_sd_raw.Player, dk_sd_raw.player_ID))
            fd_id_dict_sd = dict(zip(fd_sd_raw.Player, fd_sd_raw.player_ID))
            dk_nba_lineups = pd.DataFrame(columns=dk_nba_columns)
            dk_nba_sd_lineups = pd.DataFrame(columns=dk_nba_sd_columns)
            fd_nba_lineups = pd.DataFrame(columns=fd_nba_columns)
            fd_nba_sd_lineups = pd.DataFrame(columns=fd_nba_sd_columns)

            dk_wnba_lineups = pd.DataFrame(columns=dk_wnba_columns)
            dk_wnba_sd_lineups = pd.DataFrame(columns=dk_wnba_sd_columns)
            fd_wnba_lineups = pd.DataFrame(columns=fd_wnba_columns)
            fd_wnba_sd_lineups = pd.DataFrame(columns=fd_wnba_sd_columns)
            t_stamp = f"Last Update: " + str(timestamp) + f" CST"
            for key in st.session_state.keys():
                del st.session_state[key]
with view_col:
        view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
with site_col:
    site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
with league_col:
    league_var = st.radio("What League to load:", ('WNBA', 'NBA'), key='league_var')
    dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats(league_var)

tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
with tab1:
    
    with st.expander("Info and Filters"):
        col1, col2, col3 = st.columns(3)
        
        with col1:
            slate_type_var2 = st.radio("What slate type are you working with?", ('Regular', 'Showdown'), key='slate_type_var2')
        with col2:
            slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary'), key='slate_split')

            if slate_split == 'Main Slate':
                if site_var2 == 'Draftkings':
                    if slate_type_var2 == 'Regular':
                        site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
                        raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
                    elif slate_type_var2 == 'Showdown':
                        site_baselines = sd_raw[sd_raw['site'] == 'Draftkings']
                        raw_baselines = site_baselines[site_baselines['slate'] == 'Showdown #1']
                elif site_var2 == 'Fanduel':
                    if slate_type_var2 == 'Regular':
                        site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
                        raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
                    elif slate_type_var2 == 'Showdown':
                        site_baselines = sd_raw[sd_raw['site'] == 'Fanduel']
                        raw_baselines = site_baselines[site_baselines['slate'] == 'Showdown #1']
            elif slate_split == 'Secondary':
                if site_var2 == 'Draftkings':
                    if slate_type_var2 == 'Regular':
                        site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
                        raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate']
                    elif slate_type_var2 == 'Showdown':
                        site_baselines = sd_raw[sd_raw['site'] == 'Draftkings']
                        raw_baselines = site_baselines[site_baselines['slate'] == 'Showdown #2']
                elif site_var2 == 'Fanduel':
                    if slate_type_var2 == 'Regular':
                        site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
                        raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate']
                    elif slate_type_var2 == 'Showdown':
                        site_baselines = sd_raw[sd_raw['site'] == 'Fanduel']
                        raw_baselines = site_baselines[site_baselines['slate'] == 'Showdown #2']
        
        with col3:
            split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2')
            if split_var2 == 'Specific Games':
                team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2')
            else:
                team_var2 = raw_baselines.Team.values.tolist()

        pos_var2 = st.selectbox('Position Filter', options=['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2')
        col1, col2 = st.columns(2)
        with col1:
            low_salary = st.number_input('Enter Lowest Salary', min_value=300, max_value=15000, value=300, step=100, key='low_salary')
        with col2:
            high_salary = st.number_input('Enter Highest Salary', min_value=300, max_value=25000, value=25000, step=100, key='high_salary')
    
    display_container_1 = st.empty()
    display_dl_container_1 = st.empty()
    display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
    display_proj = display_proj[display_proj['Salary'].between(low_salary, high_salary)]
    if view_var2 == 'Advanced':
        display_proj = display_proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
                                    'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
    elif view_var2 == 'Simple':
        display_proj = display_proj[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']]
    export_data = raw_baselines.copy()
    export_data_pm = raw_baselines[['Player', 'Position', 'Team', 'Salary', 'Median', 'Own', 'CPT_Own']]
    export_data_pm = export_data_pm.rename(columns={'Own': 'ownership', 'Median': 'median', 'Player': 'player_names', 'Position': 'position', 'Team': 'team', 'Salary': 'salary', 'CPT_Own': 'captain ownership'})

    # display_proj = display_proj.set_index('Player')
    st.session_state.display_proj = display_proj.set_index('Player', drop=True)

    reg_dl_col, pm_dl_col, blank_col = st.columns([2, 2, 6])
    with reg_dl_col:
        st.download_button(
                    label="Export ROO (Regular)",
                    data=convert_df_to_csv(export_data),
                    file_name='NBA_ROO_export.csv',
                    mime='text/csv',
        )
    with pm_dl_col:
        st.download_button(
                    label="Export ROO (Portfolio Manager)",
                    data=convert_df_to_csv(export_data_pm),
                    file_name='NBA_ROO_export.csv',
                    mime='text/csv',
        )
        
    if 'display_proj' in st.session_state:
        if pos_var2 == 'All':
            st.session_state.display_proj = st.session_state.display_proj
        elif pos_var2 != 'All':
            st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
        st.dataframe(st.session_state.display_proj.style.set_properties(**{'font-size': '6pt'}).background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2),
        height=1000, use_container_width = True)
    
    

with tab2:
    with st.expander("Info and Filters"):
        if st.button("Load/Reset Data", key='reset2'):
            st.cache_data.clear()
            dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats('NBA')
            salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
            id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
            salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
            dk_id_dict_sd = dict(zip(dk_sd_raw.Player, dk_sd_raw.player_ID))
            fd_id_dict_sd = dict(zip(fd_sd_raw.Player, fd_sd_raw.player_ID))
            dk_nba_lineups = pd.DataFrame(columns=dk_nba_columns)
            dk_nba_sd_lineups = pd.DataFrame(columns=dk_nba_sd_columns)
            fd_nba_lineups = pd.DataFrame(columns=fd_nba_columns)
            fd_nba_sd_lineups = pd.DataFrame(columns=fd_nba_sd_columns)

            dk_wnba_lineups = pd.DataFrame(columns=dk_wnba_columns)
            dk_wnba_sd_lineups = pd.DataFrame(columns=dk_wnba_sd_columns)
            fd_wnba_lineups = pd.DataFrame(columns=fd_wnba_columns)
            fd_wnba_sd_lineups = pd.DataFrame(columns=fd_wnba_sd_columns)
            t_stamp = f"Last Update: " + str(timestamp) + f" CST"
            for key in st.session_state.keys():
                del st.session_state[key]
    
        col1, col2, col3, col4, col5 = st.columns(5)
        with col1:
            slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary'))
        with col2:
            slate_type_var1 = st.radio("What slate type are you working with?", ('Regular', 'Showdown'))
        with col3:
            lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
        with col4:
            if site_var2 == 'Draftkings':
                if league_var == 'NBA':
                    if slate_type_var1 == 'Regular':
                        column_names = dk_nba_columns
                    elif slate_type_var1 == 'Showdown':
                        column_names = dk_nba_sd_columns
                elif league_var == 'WNBA':
                    if slate_type_var1 == 'Regular':
                        column_names = dk_wnba_columns
                    elif slate_type_var1 == 'Showdown':
                        column_names = dk_wnba_sd_columns
                
                player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
                if player_var1 == 'Specific Players':
                        player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
                elif player_var1 == 'Full Slate':
                        player_var2 = dk_raw.Player.values.tolist()
                        
            elif site_var2 == 'Fanduel':
                if league_var == 'NBA':
                    if slate_type_var1 == 'Regular':
                        column_names = fd_nba_columns
                    elif slate_type_var1 == 'Showdown':
                        column_names = fd_nba_sd_columns
                elif league_var == 'WNBA':
                    if slate_type_var1 == 'Regular':
                        column_names = fd_wnba_columns
                    elif slate_type_var1 == 'Showdown':
                        column_names = fd_wnba_sd_columns
                
                player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
                if player_var1 == 'Specific Players':
                        player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
                elif player_var1 == 'Full Slate':
                        player_var2 = fd_raw.Player.values.tolist()
        with col5:
            if site_var2 == 'Draftkings':
                salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 50000, value = 49000, step = 100, key = 'salary_min_var')
                salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 50000, value = 50000, step = 100, key = 'salary_max_var')
            elif site_var2 == 'Fanduel':
                salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 40000, value = 39000, step = 100, key = 'salary_min_var')
                salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 40000, value = 40000, step = 100, key = 'salary_max_var')

        reg_dl_col, filtered_dl_col, blank_dl_col = st.columns([2, 2, 6])
        with reg_dl_col:
            if st.button("Prepare full data export", key='data_export'):
                name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
                data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
                if site_var2 == 'Draftkings':
                    if slate_type_var1 == 'Regular':
                        if league_var == 'NBA':
                            map_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
                        elif league_var == 'WNBA':
                            map_columns = ['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL']
                    elif slate_type_var1 == 'Showdown':
                        map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
                    for col_idx in map_columns:
                        if slate_type_var1 == 'Regular':
                            data_export[col_idx] = data_export[col_idx].map(id_dict)
                        elif slate_type_var1 == 'Showdown':
                            data_export[col_idx] = data_export[col_idx].map(dk_id_dict_sd)
                elif site_var2 == 'Fanduel':
                    if slate_type_var1 == 'Regular':
                        if league_var == 'NBA':
                            map_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'C2', 'UTIL']
                        elif league_var == 'WNBA':
                            map_columns = ['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4']
                    elif slate_type_var1 == 'Showdown':
                        map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
                    for col_idx in map_columns:
                        if slate_type_var1 == 'Regular':
                            data_export[col_idx] = data_export[col_idx].map(id_dict)
                        elif slate_type_var1 == 'Showdown':
                            data_export[col_idx] = data_export[col_idx].map(fd_id_dict_sd)

                pm_name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                pm_data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                reg_opt_col, pm_opt_col = st.columns(2)

                with reg_opt_col:
                    st.download_button(
                        label="Export optimals set (IDs)",
                        data=convert_df(data_export),
                        file_name='NBA_optimals_export.csv',
                        mime='text/csv',
                    )
                    st.download_button(
                        label="Export optimals set (Names)",
                        data=convert_df(name_export),
                        file_name='NBA_optimals_export.csv',
                        mime='text/csv',
                    )
                with pm_opt_col:
                    st.download_button(
                        label="Portfolio Manager Export (IDs)",
                        data=convert_pm_df(pm_data_export),
                        file_name='NBA_optimals_export.csv',
                        mime='text/csv',
                    )
                    st.download_button(
                        label="Portfolio Manager Export (Names)",
                        data=convert_pm_df(pm_name_export),
                        file_name='NBA_optimals_export.csv',
                        mime='text/csv',
                    )
        with filtered_dl_col:
            if st.button("Prepare full data export (Filtered)", key='data_export_filtered'):
                name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
                data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
                if site_var2 == 'Draftkings':
                    if slate_type_var1 == 'Regular':
                        if league_var == 'NBA':
                            map_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
                        elif league_var == 'WNBA':
                            map_columns = ['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL']
                    elif slate_type_var1 == 'Showdown':
                        map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
                elif site_var2 == 'Fanduel':
                    if slate_type_var1 == 'Regular':
                        if league_var == 'NBA':
                            map_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'C2', 'UTIL']
                        elif league_var == 'WNBA':
                            map_columns = ['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4']
                    elif slate_type_var1 == 'Showdown':
                        map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
                for col_idx in map_columns:
                    if slate_type_var1 == 'Regular':
                        data_export[col_idx] = data_export[col_idx].map(id_dict)
                    elif slate_type_var1 == 'Showdown':
                        data_export[col_idx] = data_export[col_idx].map(fd_id_dict_sd)
                data_export = data_export[data_export['salary'] >= salary_min_var]
                data_export = data_export[data_export['salary'] <= salary_max_var]

                name_export = name_export[name_export['salary'] >= salary_min_var]
                name_export = name_export[name_export['salary'] <= salary_max_var]
                
                pm_name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                pm_data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)

                reg_opt_col, pm_opt_col = st.columns(2)
                with reg_opt_col:
                    st.download_button(
                        label="Export optimals set (IDs)",
                        data=convert_df(data_export),
                        file_name='NBA_optimals_export.csv',
                        mime='text/csv',
                    )
                    st.download_button(
                        label="Export optimals set (Names)",
                        data=convert_df(name_export),
                        file_name='NBA_optimals_export.csv',
                        mime='text/csv',
                    )
                with pm_opt_col:
                    st.download_button(
                        label="Portfolio Manager Export (IDs)",
                        data=convert_pm_df(pm_data_export),
                        file_name='NBA_optimals_export.csv',
                        mime='text/csv',
                    )
                    st.download_button(
                        label="Portfolio Manager Export (Names)",
                        data=convert_pm_df(pm_name_export),
                        file_name='NBA_optimals_export.csv',
                        mime='text/csv',
                    )
            

    if site_var2 == 'Draftkings':
        if 'working_seed' in st.session_state:
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = st.session_state.working_seed
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)

        elif 'working_seed' not in st.session_state:
            if slate_type_var1 == 'Regular':
                st.session_state.working_seed = init_DK_lineups(slate_var1, league_var)
            elif slate_type_var1 == 'Showdown':
                st.session_state.working_seed = init_DK_SD_lineups(slate_var1, league_var)
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                if slate_type_var1 == 'Regular':
                    st.session_state.working_seed = init_DK_lineups(slate_var1, league_var)
                elif slate_type_var1 == 'Showdown':
                    st.session_state.working_seed = init_DK_SD_lineups(slate_var1, league_var)
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        
    elif site_var2 == 'Fanduel':
        if 'working_seed' in st.session_state:
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = st.session_state.working_seed
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        
        elif 'working_seed' not in st.session_state:
            if slate_type_var1 == 'Regular':
                st.session_state.working_seed = init_FD_lineups(slate_var1, league_var)
            elif slate_type_var1 == 'Showdown':
                st.session_state.working_seed = init_FD_SD_lineups(slate_var1, league_var)
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                if slate_type_var1 == 'Regular':
                    st.session_state.working_seed = init_FD_lineups(slate_var1, league_var)
                elif slate_type_var1 == 'Showdown':
                    st.session_state.working_seed = init_FD_SD_lineups(slate_var1, league_var)
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
    st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['salary'].between(salary_min_var, salary_max_var)]
    export_file = st.session_state.data_export_display.copy()
    if site_var2 == 'Draftkings':
        if slate_type_var1 == 'Regular':
            for col_idx in range(8):
                export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
        elif slate_type_var1 == 'Showdown':
            for col_idx in range(6):
                export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(dk_id_dict_sd)
    elif site_var2 == 'Fanduel':
        if slate_type_var1 == 'Regular':
            for col_idx in range(9):
                export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
        elif slate_type_var1 == 'Showdown':
            for col_idx in range(6):
                export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(fd_id_dict_sd)
            
    with st.container():
        if st.button("Reset Optimals", key='reset3'):
            for key in st.session_state.keys():
                del st.session_state[key]
            if site_var2 == 'Draftkings':
                if league_var == 'NBA':
                    if slate_type_var1 == 'Regular':
                        st.session_state.working_seed = dk_nba_lineups.copy()
                    elif slate_type_var1 == 'Showdown':
                        st.session_state.working_seed = dk_nba_sd_lineups.copy()
                elif league_var == 'WNBA':
                    if slate_type_var1 == 'Regular':
                        st.session_state.working_seed = dk_wnba_lineups.copy()
                    elif slate_type_var1 == 'Showdown':
                        st.session_state.working_seed = dk_wnba_sd_lineups.copy()
            elif site_var2 == 'Fanduel':
                if league_var == 'NBA':
                    if slate_type_var1 == 'Regular':
                        st.session_state.working_seed = fd_nba_lineups.copy()
                    elif slate_type_var1 == 'Showdown':
                        st.session_state.working_seed = fd_nba_sd_lineups.copy()
                elif league_var == 'WNBA':
                    if slate_type_var1 == 'Regular':
                        st.session_state.working_seed = fd_wnba_lineups.copy()
                    elif slate_type_var1 == 'Showdown':
                        st.session_state.working_seed = fd_wnba_sd_lineups.copy()
        if 'data_export_display' in st.session_state:
            st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
        st.download_button(
            label="Export display optimals",
            data=convert_df(export_file),
            file_name='NBA_display_optimals.csv',
            mime='text/csv',
        )
    
    with st.container():
        if 'working_seed' in st.session_state:
            # Create a new dataframe with summary statistics
            if site_var2 == 'Draftkings':
                if league_var == 'NBA':
                    if slate_type_var1 == 'Regular':
                        summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                            'Salary': [
                                np.min(st.session_state.working_seed[:,8]),
                                np.mean(st.session_state.working_seed[:,8]),
                                np.max(st.session_state.working_seed[:,8]),
                                np.std(st.session_state.working_seed[:,8])
                            ],
                            'Proj': [
                                np.min(st.session_state.working_seed[:,9]),
                                np.mean(st.session_state.working_seed[:,9]),
                                np.max(st.session_state.working_seed[:,9]),
                                np.std(st.session_state.working_seed[:,9])
                            ],
                            'Own': [
                                np.min(st.session_state.working_seed[:,14]),
                                np.mean(st.session_state.working_seed[:,14]),
                                np.max(st.session_state.working_seed[:,14]),
                                np.std(st.session_state.working_seed[:,14])
                            ]
                        })
                    elif slate_type_var1 == 'Showdown':
                        summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                            'Salary': [
                                np.min(st.session_state.working_seed[:,6]),
                                np.mean(st.session_state.working_seed[:,6]),
                                np.max(st.session_state.working_seed[:,6]),
                                np.std(st.session_state.working_seed[:,6])
                            ],
                            'Proj': [
                                np.min(st.session_state.working_seed[:,7]),
                                np.mean(st.session_state.working_seed[:,7]),
                                np.max(st.session_state.working_seed[:,7]),
                                np.std(st.session_state.working_seed[:,7])
                            ],
                            'Own': [
                                np.min(st.session_state.working_seed[:,12]),
                                np.mean(st.session_state.working_seed[:,12]),
                                np.max(st.session_state.working_seed[:,12]),
                                np.std(st.session_state.working_seed[:,12])
                            ]
                        })
                elif league_var == 'WNBA':
                    if slate_type_var1 == 'Regular':
                        summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                            'Salary': [
                                np.min(st.session_state.working_seed[:,6]),
                                np.mean(st.session_state.working_seed[:,6]),
                                np.max(st.session_state.working_seed[:,6]),
                                np.std(st.session_state.working_seed[:,6])
                            ],
                            'Proj': [
                                np.min(st.session_state.working_seed[:,7]),
                                np.mean(st.session_state.working_seed[:,7]),
                                np.max(st.session_state.working_seed[:,7]),
                                np.std(st.session_state.working_seed[:,7])
                            ],
                            'Own': [
                                np.min(st.session_state.working_seed[:,12]),
                                np.mean(st.session_state.working_seed[:,12]),
                                np.max(st.session_state.working_seed[:,12]),
                                np.std(st.session_state.working_seed[:,12])
                            ]
                        })
                    elif slate_type_var1 == 'Showdown':
                        summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                            'Salary': [
                                np.min(st.session_state.working_seed[:,6]),
                                np.mean(st.session_state.working_seed[:,6]),
                                np.max(st.session_state.working_seed[:,6]),
                                np.std(st.session_state.working_seed[:,6])
                            ],
                            'Proj': [
                                np.min(st.session_state.working_seed[:,7]),
                                np.mean(st.session_state.working_seed[:,7]),
                                np.max(st.session_state.working_seed[:,7]),
                                np.std(st.session_state.working_seed[:,7])
                            ],
                            'Own': [
                                np.min(st.session_state.working_seed[:,12]),
                                np.mean(st.session_state.working_seed[:,12]),
                                np.max(st.session_state.working_seed[:,12]),
                                np.std(st.session_state.working_seed[:,12])
                            ]
                        })
                
            elif site_var2 == 'Fanduel':
                if league_var == 'NBA':
                    if slate_type_var1 == 'Regular':
                        summary_df = pd.DataFrame({
                            'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                            'Salary': [
                                np.min(st.session_state.working_seed[:,9]),
                                np.mean(st.session_state.working_seed[:,9]),
                                np.max(st.session_state.working_seed[:,9]),
                                np.std(st.session_state.working_seed[:,9])
                            ],
                            'Proj': [
                                np.min(st.session_state.working_seed[:,10]),
                                np.mean(st.session_state.working_seed[:,10]),
                                np.max(st.session_state.working_seed[:,10]),
                                np.std(st.session_state.working_seed[:,10])
                            ],
                            'Own': [
                                np.min(st.session_state.working_seed[:,15]),
                                np.mean(st.session_state.working_seed[:,15]),
                                np.max(st.session_state.working_seed[:,15]),
                                np.std(st.session_state.working_seed[:,15])
                            ]
                        })
                    elif slate_type_var1 == 'Showdown':
                        summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                            'Salary': [
                                np.min(st.session_state.working_seed[:,6]),
                                np.mean(st.session_state.working_seed[:,6]),
                                np.max(st.session_state.working_seed[:,6]),
                                np.std(st.session_state.working_seed[:,6])
                            ],
                            'Proj': [
                                np.min(st.session_state.working_seed[:,7]),
                                np.mean(st.session_state.working_seed[:,7]),
                                np.max(st.session_state.working_seed[:,7]),
                                np.std(st.session_state.working_seed[:,7])
                            ],
                            'Own': [
                                np.min(st.session_state.working_seed[:,12]),
                                np.mean(st.session_state.working_seed[:,12]),
                                np.max(st.session_state.working_seed[:,12]),
                                np.std(st.session_state.working_seed[:,12])
                            ]
                        })
                elif league_var == 'WNBA':
                    if slate_type_var1 == 'Regular':
                        summary_df = pd.DataFrame({
                            'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                            'Salary': [
                                np.min(st.session_state.working_seed[:,7]),
                                np.mean(st.session_state.working_seed[:,7]),
                                np.max(st.session_state.working_seed[:,7]),
                                np.std(st.session_state.working_seed[:,7])
                            ],
                            'Proj': [
                                np.min(st.session_state.working_seed[:,8]),
                                np.mean(st.session_state.working_seed[:,8]),
                                np.max(st.session_state.working_seed[:,8]),
                                np.std(st.session_state.working_seed[:,8])
                            ],
                            'Own': [
                                np.min(st.session_state.working_seed[:,13]),
                                np.mean(st.session_state.working_seed[:,13]),
                                np.max(st.session_state.working_seed[:,13]),
                                np.std(st.session_state.working_seed[:,13])
                            ]
                        })
                    elif slate_type_var1 == 'Showdown':
                        summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                            'Salary': [
                                np.min(st.session_state.working_seed[:,6]),
                                np.mean(st.session_state.working_seed[:,6]),
                                np.max(st.session_state.working_seed[:,6]),
                                np.std(st.session_state.working_seed[:,6])
                            ],
                            'Proj': [
                                np.min(st.session_state.working_seed[:,7]),
                                np.mean(st.session_state.working_seed[:,7]),
                                np.max(st.session_state.working_seed[:,7]),
                                np.std(st.session_state.working_seed[:,7])
                            ],
                            'Own': [
                                np.min(st.session_state.working_seed[:,12]),
                                np.mean(st.session_state.working_seed[:,12]),
                                np.max(st.session_state.working_seed[:,12]),
                                np.std(st.session_state.working_seed[:,12])
                            ]
                        })

            # Set the index of the summary dataframe as the "Metric" column
            summary_df = summary_df.set_index('Metric')

            # Display the summary dataframe
            st.subheader("Optimal Statistics")
            st.dataframe(summary_df.style.format({
                'Salary': '{:.2f}',
                'Proj': '{:.2f}',
                'Own': '{:.2f}'
            }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)

    with st.container():
        tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
        with tab1:
            if 'data_export_display' in st.session_state:
                if league_var == 'NBA':
                    if slate_type_var1 == 'Regular':
                        if site_var2 == 'Draftkings':
                            player_columns = st.session_state.data_export_display.iloc[:, :8]
                        elif site_var2 == 'Fanduel':
                            player_columns = st.session_state.data_export_display.iloc[:, :9]
                    elif slate_type_var1 == 'Showdown':
                        if site_var2 == 'Draftkings':
                            player_columns = st.session_state.data_export_display.iloc[:, :5]
                        elif site_var2 == 'Fanduel':
                            player_columns = st.session_state.data_export_display.iloc[:, :5]
                elif league_var == 'WNBA':
                    if slate_type_var1 == 'Regular':
                        if site_var2 == 'Draftkings':
                            player_columns = st.session_state.data_export_display.iloc[:, :7]
                        elif site_var2 == 'Fanduel':
                            player_columns = st.session_state.data_export_display.iloc[:, :8]
                    elif slate_type_var1 == 'Showdown':
                        if site_var2 == 'Draftkings':
                            player_columns = st.session_state.data_export_display.iloc[:, :5]
                        elif site_var2 == 'Fanduel':
                            player_columns = st.session_state.data_export_display.iloc[:, :5]
                
                
                # Flatten the DataFrame and count unique values
                value_counts = player_columns.values.flatten().tolist()
                value_counts = pd.Series(value_counts).value_counts()
                
                percentages = (value_counts / lineup_num_var * 100).round(2)
                
                # Create a DataFrame with the results
                summary_df = pd.DataFrame({
                    'Player': value_counts.index,
                    'Salary': [salary_dict.get(player, player) for player in value_counts.index],
                    'Frequency': value_counts.values,
                    'Percentage': percentages.values                        
                })
                
                # Sort by frequency in descending order
                summary_df = summary_df.sort_values('Frequency', ascending=False)
                
                # Display the table
                st.write("Player Frequency Table:")
                st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
            
                st.download_button(
                    label="Export player frequency",
                    data=convert_df_to_csv(summary_df),
                    file_name='NBA_player_frequency.csv',
                    mime='text/csv',
                )
        with tab2:
            if 'working_seed' in st.session_state:
                if league_var == 'NBA':
                    if slate_type_var1 == 'Regular':
                        if site_var2 == 'Draftkings':
                            player_columns = st.session_state.working_seed[:, :8]
                        elif site_var2 == 'Fanduel':
                            player_columns = st.session_state.working_seed[:, :9]
                    elif slate_type_var1 == 'Showdown':
                        if site_var2 == 'Draftkings':
                            player_columns = st.session_state.working_seed[:, :5]
                        elif site_var2 == 'Fanduel':
                            player_columns = st.session_state.working_seed[:, :5]
                elif league_var == 'WNBA':
                    if slate_type_var1 == 'Regular':
                        if site_var2 == 'Draftkings':
                            player_columns = st.session_state.working_seed[:, :7]
                        elif site_var2 == 'Fanduel':
                            player_columns = st.session_state.working_seed[:, :8]
                    elif slate_type_var1 == 'Showdown':
                        if site_var2 == 'Draftkings':
                            player_columns = st.session_state.working_seed[:, :5]
                        elif site_var2 == 'Fanduel':
                            player_columns = st.session_state.working_seed[:, :5]
                
                # Flatten the DataFrame and count unique values
                value_counts = player_columns.flatten().tolist()
                value_counts = pd.Series(value_counts).value_counts()
                
                percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
                # Create a DataFrame with the results
                summary_df = pd.DataFrame({
                    'Player': value_counts.index,
                    'Salary': [salary_dict.get(player, player) for player in value_counts.index],
                    'Frequency': value_counts.values,
                    'Percentage': percentages.values                        
                })
                
                # Sort by frequency in descending order
                summary_df = summary_df.sort_values('Frequency', ascending=False)
                
                # Display the table
                st.write("Seed Frame Frequency Table:")
                st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
            
                st.download_button(
                    label="Export seed frame frequency",
                    data=convert_df_to_csv(summary_df),
                    file_name='NBA_seed_frame_frequency.csv',
                    mime='text/csv',
                )