File size: 26,022 Bytes
b2108ae
e5e340b
 
d511c44
e5e340b
 
 
c0809e5
e5e340b
64e36b4
7cecffc
971fffe
7cecffc
4d6d97a
 
e5e340b
 
 
 
 
340176f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e340b
fbf37ad
8d3eb2c
fbf37ad
 
 
e5e340b
 
2b898e9
 
6355b2b
2b898e9
53cd5ff
34960fe
 
53cd5ff
34960fe
 
53cd5ff
 
34960fe
 
 
 
 
 
 
e5e340b
 
91a8ee3
e5e340b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2108ae
e5e340b
 
 
 
 
 
 
91a8ee3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c68cca
91a8ee3
 
4c68cca
91a8ee3
 
 
4c68cca
91a8ee3
 
4c68cca
 
 
91a8ee3
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e340b
 
 
a9b1c26
e5e340b
 
 
 
 
 
 
 
 
 
7cecffc
e5e340b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9b7495
 
e5e340b
 
 
 
 
 
 
 
 
 
 
 
 
d9b7495
 
e5e340b
d9b7495
 
e5e340b
 
 
5f28cd3
d9b7495
e5e340b
 
 
 
 
 
 
 
 
 
 
2b898e9
a4e353d
2b898e9
a4e353d
8d3eb2c
c0f7916
8ba5467
e5e340b
2b898e9
0a98de7
08750ad
1d5eb19
65275be
2b898e9
08750ad
e5e340b
fbf37ad
e5e340b
8c26465
 
e5e340b
3127dc9
e5e340b
 
 
3127dc9
8c26465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0efcd9
 
8c26465
 
 
 
 
e5e340b
d511c44
 
90869c2
d511c44
90869c2
d511c44
932e273
d13e84f
 
 
d511c44
a4e353d
 
1258ec5
932e273
 
 
 
 
 
 
d3eff15
932e273
1258ec5
d3eff15
932e273
 
 
 
 
 
542509f
932e273
b895dd3
411b7b7
ef2ab0c
1258ec5
67e7e14
411b7b7
1258ec5
411b7b7
 
d511c44
 
c0f7916
 
65275be
d511c44
1258ec5
106863f
3127dc9
1258ec5
d511c44
a752441
c0f7916
d511c44
 
5616e81
 
 
b0365ad
78d4c43
5616e81
 
 
 
 
 
 
 
 
 
0e2e1e6
 
5616e81
81f859b
5616e81
 
 
 
 
8c26465
 
8993619
8c26465
 
 
 
 
 
 
0e2e1e6
 
 
 
 
8c26465
 
 
 
 
 
 
 
 
21479cb
d511c44
90869c2
c65f546
d13e84f
 
 
 
 
90869c2
1258ec5
411b7b7
 
 
 
 
 
 
 
 
1258ec5
411b7b7
 
 
 
 
 
 
 
 
 
ef2ab0c
 
1258ec5
67e7e14
ef2ab0c
 
 
 
1258ec5
3127dc9
2b898e9
106863f
3127dc9
 
1258ec5
d511c44
c0f7916
 
65275be
 
c2b17c7
78d4c43
c0debe7
 
c0f7916
f932524
d837990
6cb4dbe
 
 
 
d837990
7cecffc
d13e84f
 
 
7cecffc
411b7b7
 
 
 
 
 
 
 
 
7cecffc
411b7b7
 
 
 
 
 
 
 
 
 
ef2ab0c
 
7cecffc
67e7e14
ef2ab0c
4d6d97a
6cb4dbe
f932524
 
6cb4dbe
f932524
6cb4dbe
 
 
 
67e7e14
6cb4dbe
67e7e14
 
cb9ca26
67e7e14
c65f546
67e7e14
 
 
 
 
 
 
6cb4dbe
c65f546
 
 
cb9ca26
 
 
 
 
 
 
 
 
 
 
c65f546
 
 
e983327
6cb4dbe
09ac12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0efcd9
 
 
 
 
 
09ac12e
65275be
f932524
 
 
 
c755f1c
f932524
 
 
d13e84f
7181a20
d13e84f
 
f932524
411b7b7
 
 
 
 
 
 
 
 
f932524
411b7b7
 
 
 
 
 
 
 
 
 
ef2ab0c
 
f932524
67e7e14
ef2ab0c
f932524
 
 
 
 
da23fc7
65275be
67e7e14
1210377
67e7e14
cb9ca26
 
67e7e14
c65f546
67e7e14
 
 
 
 
 
7cecffc
c65f546
 
cb9ca26
 
 
 
 
3ef6a0f
cb9ca26
 
 
3ef6a0f
cb9ca26
c65f546
 
 
e983327
09ac12e
3ef6a0f
 
 
 
 
 
 
 
 
 
 
 
 
7cecffc
3ef6a0f
 
 
 
 
 
 
7cecffc
 
 
 
d511c44
932e273
d511c44
932e273
c65f546
7cecffc
 
 
f932524
 
7cecffc
d511c44
 
d066a0e
0b84d55
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import pytorch_lightning as pl
from neuralforecast.core import NeuralForecast
from neuralforecast.models import NHITS, TimesNet, LSTM, TFT
from neuralforecast.losses.pytorch import HuberMQLoss
from neuralforecast.utils import AirPassengersDF
import time
from st_aggrid import AgGrid
from nixtla import NixtlaClient
import os

st.set_page_config(layout='wide')
    
@st.cache_resource
def load_model(path, freq):
    nf = NeuralForecast.load(path=path)
    return nf

@st.cache_resource
def load_all_models():
    nhits_paths = {
        'D': './M4/NHITS/daily',
        'M': './M4/NHITS/monthly',
        'H': './M4/NHITS/hourly',
        'W': './M4/NHITS/weekly',
        'Y': './M4/NHITS/yearly'
    }
    
    timesnet_paths = {
        'D': './M4/TimesNet/daily',
        'M': './M4/TimesNet/monthly',
        'H': './M4/TimesNet/hourly',
        'W': './M4/TimesNet/weekly',
        'Y': './M4/TimesNet/yearly'
    }
    
    lstm_paths = {
        'D': './M4/LSTM/daily',
        'M': './M4/LSTM/monthly',
        'H': './M4/LSTM/hourly',
        'W': './M4/LSTM/weekly',
        'Y': './M4/LSTM/yearly'
    }
    
    tft_paths = {
        'D': './M4/TFT/daily',
        'M': './M4/TFT/monthly',
        'H': './M4/TFT/hourly',
        'W': './M4/TFT/weekly',
        'Y': './M4/TFT/yearly'
    }
    nhits_models = {freq: load_model(path, freq) for freq, path in nhits_paths.items()}
    timesnet_models = {freq: load_model(path, freq) for freq, path in timesnet_paths.items()}
    lstm_models = {freq: load_model(path, freq) for freq, path in lstm_paths.items()}
    tft_models = {freq: load_model(path, freq) for freq, path in tft_paths.items()}

    return nhits_models, timesnet_models, lstm_models, tft_models

def generate_forecast(model, df,tag=False):
    if tag == 'retrain':
        forecast_df = model.predict()
    else:
        forecast_df = model.predict(df=df)
    return forecast_df

def determine_frequency(df):
    df['ds'] = pd.to_datetime(df['ds'])
    df = df.drop_duplicates(subset='ds')
    df = df.set_index('ds')
    
    # # Create a complete date range
    # full_range = pd.date_range(start=df.index.min(), end=df.index.max(),freq=freq)
    
    # # Reindex the DataFrame to this full date range
    # df_full = df.reindex(full_range)
    
    # Infer the frequency
    # freq = pd.infer_freq(df_full.index)

    freq = pd.infer_freq(df.index)
    if not freq:
        st.warning('The forecast will use default Daily forecast due to date inconsistency. Please check your data.',icon="⚠️")
        freq = 'D'
        
    return freq

def plot_forecasts_matplotlib(forecast_df, train_df, title):
    fig, ax = plt.subplots(1, 1, figsize=(20, 7))
    plot_df = pd.concat([train_df, forecast_df]).set_index('ds')
    historical_col = 'y'
    forecast_col = next((col for col in plot_df.columns if 'median' in col), None)
    lo_col = next((col for col in plot_df.columns if 'lo-90' in col), None)
    hi_col = next((col for col in plot_df.columns if 'hi-90' in col), None)
    if forecast_col is None:
        raise KeyError("No forecast column found in the data.")
    plot_df[[historical_col, forecast_col]].plot(ax=ax, linewidth=2, label=['Historical', 'Forecast'])
    if lo_col and hi_col:
        ax.fill_between(
            plot_df.index,
            plot_df[lo_col],
            plot_df[hi_col],
            color='blue',
            alpha=0.3,
            label='90% Confidence Interval'
        )
    ax.set_title(title, fontsize=22)
    ax.set_ylabel('Value', fontsize=20)
    ax.set_xlabel('Timestamp [t]', fontsize=20)
    ax.legend(prop={'size': 15})
    ax.grid()
    st.pyplot(fig)

import plotly.graph_objects as go

def plot_forecasts(forecast_df, train_df, title):
    # Combine historical and forecast data
    plot_df = pd.concat([train_df, forecast_df]).set_index('ds')
    
    # Find relevant columns
    historical_col = 'y'
    forecast_col = next((col for col in plot_df.columns if 'median' in col), None)
    lo_col = next((col for col in plot_df.columns if 'lo-90' in col), None)
    hi_col = next((col for col in plot_df.columns if 'hi-90' in col), None)
    
    if forecast_col is None:
        raise KeyError("No forecast column found in the data.")
    
    # Create Plotly figure
    fig = go.Figure()
    
    # Add historical data
    fig.add_trace(go.Scatter(x=plot_df.index, y=plot_df[historical_col], mode='lines', name='Historical'))
    
    # Add forecast data
    fig.add_trace(go.Scatter(x=plot_df.index, y=plot_df[forecast_col], mode='lines', name='Forecast'))
    
    # Add confidence interval if available
    if lo_col and hi_col:
        fig.add_trace(go.Scatter(
            x=plot_df.index,
            y=plot_df[hi_col],
            mode='lines',
            line=dict(color='rgba(0,100,80,0.2)'),
            showlegend=False
        ))
        fig.add_trace(go.Scatter(
            x=plot_df.index,
            y=plot_df[lo_col],
            mode='lines',
            line=dict(color='rgba(0,100,80,0.2)'),
            fill='tonexty',
            fillcolor='rgba(0,100,80,0.2)',
            name='90% Confidence Interval'
        ))
    
    # Update layout
    fig.update_layout(
        title=title,
        xaxis_title='Timestamp [t]',
        yaxis_title='Value',
        template='plotly_white'
    )
    
    # Display the plot
    st.plotly_chart(fig)


def select_model_based_on_frequency(freq, nhits_models, timesnet_models, lstm_models, tft_models):
    if freq == 'D':
        return nhits_models['D'], timesnet_models['D'], lstm_models['D'], tft_models['D']
    elif freq == 'ME':
        return nhits_models['M'], timesnet_models['M'], lstm_models['M'], tft_models['M']
    elif freq == 'H':
        return nhits_models['H'], timesnet_models['H'], lstm_models['H'], tft_models['H']
    elif freq in ['W', 'W-SUN']:
        return nhits_models['W'], timesnet_models['W'], lstm_models['W'], tft_models['W']
    elif freq in ['Y', 'Y-DEC']:
        return nhits_models['Y'], timesnet_models['Y'], lstm_models['Y'], tft_models['Y']
    else:
        raise ValueError(f"Unsupported frequency: {freq}")

def select_model(horizon, model_type, max_steps=50):
    if model_type == 'NHITS':
        return NHITS(input_size=5 * horizon,
                     h=horizon,
                     max_steps=max_steps,
                     stack_types=3*['identity'],
                     n_blocks=3*[1],
                     mlp_units=[[256, 256] for _ in range(3)],
                     n_pool_kernel_size=3*[1],
                     batch_size=32,
                     scaler_type='standard',
                     n_freq_downsample=[12, 4, 1],
                     loss=HuberMQLoss(level=[90]))
    elif model_type == 'TimesNet':
        return TimesNet(h=horizon,
                        input_size=horizon * 5,
                        hidden_size=32,
                        conv_hidden_size=64,
                        loss=HuberMQLoss(level=[90]),
                        scaler_type='standard',
                        learning_rate=1e-3,
                        max_steps=max_steps,
                        val_check_steps=200,
                        valid_batch_size=64,
                        windows_batch_size=128,
                        inference_windows_batch_size=512)
    elif model_type == 'LSTM':
        return LSTM(h=horizon,
                    input_size=horizon * 5,
                    loss=HuberMQLoss(level=[90]),
                    scaler_type='standard',
                    encoder_n_layers=3,
                    encoder_hidden_size=256,
                    context_size=10,
                    decoder_hidden_size=256,
                    decoder_layers=3,
                    max_steps=max_steps)
    elif model_type == 'TFT':
        return TFT(h=horizon,
                   input_size=horizon*5,
                   hidden_size=96,
                   loss=HuberMQLoss(level=[90]),
                   learning_rate=0.005,
                   scaler_type='standard',
                   windows_batch_size=128,
                   max_steps=max_steps,
                   val_check_steps=200,
                   valid_batch_size=64,
                   enable_progress_bar=True)
    else:
        raise ValueError(f"Unsupported model type: {model_type}")

def model_train(df,model, freq):
    nf = NeuralForecast(models=[model], freq=freq)
    df['ds'] = pd.to_datetime(df['ds'])
    nf.fit(df)
    return nf

def forecast_time_series(df, model_type, horizon, max_steps,y_col):
    start_time = time.time()  # Start timing
    freq = determine_frequency(df)
    st.sidebar.write(f"Data frequency: {freq}")
    
    selected_model = select_model(horizon, model_type, max_steps)
    st.spinner(f"Training {model_type} model...")
    model = model_train(df, selected_model,freq)
    
    forecast_results = {}
    forecast_results[model_type] = generate_forecast(model, df, tag='retrain')

    st.session_state.forecast_results = forecast_results
    
    for model_name, forecast_df in forecast_results.items():
        plot_forecasts(forecast_df, df, f'{model_name} Forecast for {y_col}')
        
    end_time = time.time()  # End timing
    time_taken = end_time - start_time
    st.success(f"Time taken for {model_type} forecast: {time_taken:.2f} seconds")
    if 'forecast_results' in st.session_state:
        forecast_results = st.session_state.forecast_results

        st.markdown('You can download Input and Forecast Data below')
        tab_insample, tab_forecast  = st.tabs(
                        ["Input data", "Forecast"]
                    )
            
        with tab_insample:
            df_grid = df.drop(columns="unique_id")
            st.write(df_grid)
            # grid_table = AgGrid(
            #                 df_grid,
            #                 theme="alpine",
            #             )
    
        with tab_forecast:
            if model_type in forecast_results:
                df_grid = forecast_results[model_type]
                st.write(df_grid)
                # grid_table = AgGrid(
                #                 df_grid,
                #                 theme="alpine",
                #             )

@st.cache_data
def load_default():
    df = AirPassengersDF.copy()
    return df

def transfer_learning_forecasting():
    st.title("Zero-shot Forecasting")
    st.markdown("""
    Instant time series forecasting and visualization by using various pre-trained deep neural network-based model trained on M4 data.
    """)

    nhits_models, timesnet_models, lstm_models, tft_models = load_all_models()
    
    with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
        if 'uploaded_file' not in st.session_state:
            uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
            if uploaded_file:
                df = pd.read_csv(uploaded_file)
                st.session_state.df = df
                st.session_state.uploaded_file = uploaded_file
            else:
                df = load_default()
                st.session_state.df = df
        else:
            if st.checkbox("Upload a new file (CSV)"):
                uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
                if uploaded_file:
                    df = pd.read_csv(uploaded_file)
                    st.session_state.df = df
                    st.session_state.uploaded_file = uploaded_file
                else:
                    df = st.session_state.df
            else:
                df = st.session_state.df

        columns = df.columns.tolist()
        ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
        target_columns = [col for col in columns if (col != ds_col) and (col != 'unique_id')]
        y_col = st.selectbox("Select Target column", options=target_columns, index=0)

        st.session_state.ds_col = ds_col
        st.session_state.y_col = y_col

    # Model selection and forecasting
    st.sidebar.subheader("Model Selection and Forecasting")
    model_choice = st.sidebar.selectbox("Select model", ["NHITS", "TimesNet", "LSTM", "TFT"])
    horizon = st.sidebar.number_input("Forecast horizon", value=12)

    df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
    df['unique_id']=1
    df = df[['unique_id','ds','y']]

    # Determine frequency of data
    frequency = determine_frequency(df)
    st.sidebar.write(f"Detected frequency: {frequency}")


    nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
    forecast_results = {}

    

    if st.sidebar.button("Submit"):
        start_time = time.time()  # Start timing
        if model_choice == "NHITS":
            forecast_results['NHITS'] = generate_forecast(nhits_model, df)
        elif model_choice == "TimesNet":
            forecast_results['TimesNet'] = generate_forecast(timesnet_model, df)
        elif model_choice == "LSTM":
            forecast_results['LSTM'] = generate_forecast(lstm_model, df)
        elif model_choice == "TFT":
            forecast_results['TFT'] = generate_forecast(tft_model, df)

        st.session_state.forecast_results = forecast_results
        for model_name, forecast_df in forecast_results.items():
            plot_forecasts(forecast_df.iloc[:horizon,:], df, f'{model_name} Forecast for {y_col}')

        end_time = time.time()  # End timing
        time_taken = end_time - start_time
        st.success(f"Time taken for {model_choice} forecast: {time_taken:.2f} seconds")

        if 'forecast_results' in st.session_state:
            forecast_results = st.session_state.forecast_results
    
            st.markdown('You can download Input and Forecast Data below')
            tab_insample, tab_forecast  = st.tabs(
                            ["Input data", "Forecast"]
                        )
                
            with tab_insample:
                df_grid = df.drop(columns="unique_id")
                st.write(df_grid)
                # grid_table = AgGrid(
                #                 df_grid,
                #                 theme="alpine",
                #             )
        
            with tab_forecast:
                if model_choice in forecast_results:
                    df_grid = forecast_results[model_choice]
                    st.write(df_grid)
                    # grid_table = AgGrid(
                    #                 df_grid,
                    #                 theme="alpine",
                    #             )


def dynamic_forecasting():
    st.title("Personalized Neural Forecasting")
    st.markdown("""
    Train time series forecasting model from scratch and provide forecasts/visualization by using various deep neural network-based model trained on user data.
    
    Forecasting speed depends on CPU/GPU availabilty.
    """)
    
    with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
        if 'uploaded_file' not in st.session_state:
            uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
            if uploaded_file:
                df = pd.read_csv(uploaded_file)
                st.session_state.df = df
                st.session_state.uploaded_file = uploaded_file
            else:
                df = load_default()
                st.session_state.df = df
        else:
            if st.checkbox("Upload a new file (CSV)"):
                uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
                if uploaded_file:
                    df = pd.read_csv(uploaded_file)
                    st.session_state.df = df
                    st.session_state.uploaded_file = uploaded_file
                else:
                    df = st.session_state.df
            else:
                df = st.session_state.df

        columns = df.columns.tolist()
        ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
        target_columns = [col for col in columns if (col != ds_col) and (col != 'unique_id')]
        y_col = st.selectbox("Select Target column", options=target_columns, index=0)

        st.session_state.ds_col = ds_col
        st.session_state.y_col = y_col

    df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
    
    df['unique_id']=1
    df = df[['unique_id','ds','y']]
    

    # Dynamic forecasting
    st.sidebar.subheader("Dynamic Model Selection and Forecasting")
    dynamic_model_choice = st.sidebar.selectbox("Select model for dynamic forecasting", ["NHITS", "TimesNet", "LSTM", "TFT"], key="dynamic_model_choice")
    dynamic_horizon = st.sidebar.number_input("Forecast horizon", value=12)
    dynamic_max_steps = st.sidebar.number_input('Max steps', value=20)

    if st.sidebar.button("Submit"):
        with st.spinner('Training model. This may take few minutes...'):
            forecast_time_series(df, dynamic_model_choice, dynamic_horizon, dynamic_max_steps,y_col)

def timegpt_fcst():
    nixtla_token = os.environ.get("NIXTLA_API_KEY")
    nixtla_client = NixtlaClient(
    api_key = nixtla_token
    )

    
    st.title("TimeGPT Forecasting")
    st.markdown("""
    Instant time series forecasting and visualization by using the TimeGPT API provided by Nixtla.
    """)
    with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
        if 'uploaded_file' not in st.session_state:
            uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
            if uploaded_file:
                df = pd.read_csv(uploaded_file)
                st.session_state.df = df
                st.session_state.uploaded_file = uploaded_file
            else:
                df = load_default()
                st.session_state.df = df
        else:
            if st.checkbox("Upload a new file (CSV)"):
                uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
                if uploaded_file:
                    df = pd.read_csv(uploaded_file)
                    st.session_state.df = df
                    st.session_state.uploaded_file = uploaded_file
                else:
                    df = st.session_state.df
            else:
                df = st.session_state.df

        columns = df.columns.tolist()
        ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
        target_columns = [col for col in columns if (col != ds_col) and (col != 'unique_id')]
        y_col = st.selectbox("Select Target column", options=target_columns, index=0)
        h = st.number_input("Forecast horizon", value=14)

        df = df.rename(columns={ds_col: 'ds', y_col: 'y'})

        
        id_col = 'ts_test'
        df['unique_id']=id_col
        df = df[['unique_id','ds','y']]
        

    freq = determine_frequency(df)

    df = df.drop_duplicates(subset=['ds']).reset_index(drop=True)
    
    plot_type = st.sidebar.selectbox("Select Visualization", ["Matplotlib", "Plotly"])
    if st.sidebar.button("Submit"):
        start_time = time.time()
        forecast_df = nixtla_client.forecast(
            df=df,
            h=h,
            freq=freq,
            level=[90]
        )
        st.session_state.forecast_df = forecast_df


        if 'forecast_df' in st.session_state:
            forecast_df = st.session_state.forecast_df
            
            if plot_type == "Matplotlib":
                # Convert the Plotly figure to a Matplotlib figure if needed
                # Note: You may need to handle this conversion depending on your specific use case
                # For now, this example assumes that you are using a Matplotlib figure
                fig = nixtla_client.plot(df, forecast_df, level=[90], engine='matplotlib')
                st.pyplot(fig)
            elif plot_type == "Plotly":
                # Plotly figure directly
                fig = nixtla_client.plot(df, forecast_df, level=[90], engine='plotly')
                st.plotly_chart(fig)
    
            end_time = time.time()  # End timing
            time_taken = end_time - start_time
            st.success(f"Time taken for TimeGPT forecast: {time_taken:.2f} seconds")

            if 'forecast_df' in st.session_state:
                forecast_df = st.session_state.forecast_df
        
                st.markdown('You can download Input and Forecast Data below')
                tab_insample, tab_forecast  = st.tabs(
                                ["Input data", "Forecast"]
                            )
                    
                with tab_insample:
                    df_grid = df.drop(columns="unique_id")
                    st.write(df_grid)
                    # grid_table = AgGrid(
                    #                 df_grid,
                    #                 theme="alpine",
                    #             )
            
                with tab_forecast:
                    df_grid = forecast_df
                    st.write(df_grid)
                    # grid_table = AgGrid(
                    #                 df_grid,
                    #                 theme="alpine",
                    #             )



def timegpt_anom():
    nixtla_token = os.environ.get("NIXTLA_API_KEY")
    nixtla_client = NixtlaClient(
    api_key = nixtla_token
    )

    
    st.title("TimeGPT Anomaly Detection")
    st.markdown("""
    Instant time series anomaly detection and visualization by using the TimeGPT API provided by Nixtla.
    """)
    with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
        if 'uploaded_file' not in st.session_state:
            uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
            if uploaded_file:
                df = pd.read_csv(uploaded_file)
                st.session_state.df = df
                st.session_state.uploaded_file = uploaded_file
            else:
                df = load_default()
                st.session_state.df = df
        else:
            if st.checkbox("Upload a new file (CSV)"):
                uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
                if uploaded_file:
                    df = pd.read_csv(uploaded_file)
                    st.session_state.df = df
                    st.session_state.uploaded_file = uploaded_file
                else:
                    df = st.session_state.df
            else:
                df = st.session_state.df

        columns = df.columns.tolist()
        ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
        target_columns = [col for col in columns if (col != ds_col) and (col != 'unique_id')]
        y_col = st.selectbox("Select Target column", options=target_columns, index=0)

        df = df.rename(columns={ds_col: 'ds', y_col: 'y'})

        id_col = 'ts_test'
        df['unique_id']=id_col
        df = df[['unique_id','ds','y']]

    freq = determine_frequency(df)

    df = df.drop_duplicates(subset=['ds']).reset_index(drop=True)
    
    plot_type = st.sidebar.selectbox("Select Visualization", ["Matplotlib", "Plotly"])
    if st.sidebar.button("Submit"):
        start_time=time.time()
        anom_df = nixtla_client.detect_anomalies(
            df=df,
            freq=freq,
            level=90
        )
        st.session_state.anom_df = anom_df

        if 'anom_df' in st.session_state:
            anom_df = st.session_state.anom_df
            
            if plot_type == "Matplotlib":
                # Convert the Plotly figure to a Matplotlib figure if needed
                # Note: You may need to handle this conversion depending on your specific use case
                # For now, this example assumes that you are using a Matplotlib figure
                fig = nixtla_client.plot(df, anom_df, level=[90], engine='matplotlib')
                st.pyplot(fig)
            elif plot_type == "Plotly":
                # Plotly figure directly
                fig = nixtla_client.plot(df, anom_df, level=[90], engine='plotly')
                st.plotly_chart(fig)
    
            end_time = time.time()  # End timing
            time_taken = end_time - start_time
            st.success(f"Time taken for TimeGPT forecast: {time_taken:.2f} seconds")

    
            st.markdown('You can download Input and Forecast Data below')
            tab_insample, tab_forecast  = st.tabs(
                            ["Input data", "Forecast"]
                        )
                
            with tab_insample:
                df_grid = df.drop(columns="unique_id")
                st.write(df_grid)
                # grid_table = AgGrid(
                #                 df_grid,
                #                 theme="alpine",
                #             )
        
            with tab_forecast:
                df_grid = anom_df
                st.write(df_grid)
                # grid_table = AgGrid(
                #                 df_grid,
                #                 theme="alpine",
                #             )
    
    
    

pg = st.navigation({
    "Neuralforecast": [
        # Load pages from functions
        st.Page(transfer_learning_forecasting, title="Zero-shot Forecasting", default=True, icon=":material/query_stats:"),
        st.Page(dynamic_forecasting, title="Personalized Neural Forecasting", icon=":material/monitoring:"),
    ],
        "TimeGPT": [
        # Load pages from functions
        st.Page(timegpt_fcst, title="TimeGPT Forecast", icon=":material/smart_toy:"),
        st.Page(timegpt_anom, title="TimeGPT Anomalies Detection", icon=":material/detector_offline:")
        ]
})

pg.run()