Spaces:
Running
Running
File size: 26,022 Bytes
b2108ae e5e340b d511c44 e5e340b c0809e5 e5e340b 64e36b4 7cecffc 971fffe 7cecffc 4d6d97a e5e340b 340176f e5e340b fbf37ad 8d3eb2c fbf37ad e5e340b 2b898e9 6355b2b 2b898e9 53cd5ff 34960fe 53cd5ff 34960fe 53cd5ff 34960fe e5e340b 91a8ee3 e5e340b b2108ae e5e340b 91a8ee3 4c68cca 91a8ee3 4c68cca 91a8ee3 4c68cca 91a8ee3 4c68cca 91a8ee3 e5e340b a9b1c26 e5e340b 7cecffc e5e340b d9b7495 e5e340b d9b7495 e5e340b d9b7495 e5e340b 5f28cd3 d9b7495 e5e340b 2b898e9 a4e353d 2b898e9 a4e353d 8d3eb2c c0f7916 8ba5467 e5e340b 2b898e9 0a98de7 08750ad 1d5eb19 65275be 2b898e9 08750ad e5e340b fbf37ad e5e340b 8c26465 e5e340b 3127dc9 e5e340b 3127dc9 8c26465 f0efcd9 8c26465 e5e340b d511c44 90869c2 d511c44 90869c2 d511c44 932e273 d13e84f d511c44 a4e353d 1258ec5 932e273 d3eff15 932e273 1258ec5 d3eff15 932e273 542509f 932e273 b895dd3 411b7b7 ef2ab0c 1258ec5 67e7e14 411b7b7 1258ec5 411b7b7 d511c44 c0f7916 65275be d511c44 1258ec5 106863f 3127dc9 1258ec5 d511c44 a752441 c0f7916 d511c44 5616e81 b0365ad 78d4c43 5616e81 0e2e1e6 5616e81 81f859b 5616e81 8c26465 8993619 8c26465 0e2e1e6 8c26465 21479cb d511c44 90869c2 c65f546 d13e84f 90869c2 1258ec5 411b7b7 1258ec5 411b7b7 ef2ab0c 1258ec5 67e7e14 ef2ab0c 1258ec5 3127dc9 2b898e9 106863f 3127dc9 1258ec5 d511c44 c0f7916 65275be c2b17c7 78d4c43 c0debe7 c0f7916 f932524 d837990 6cb4dbe d837990 7cecffc d13e84f 7cecffc 411b7b7 7cecffc 411b7b7 ef2ab0c 7cecffc 67e7e14 ef2ab0c 4d6d97a 6cb4dbe f932524 6cb4dbe f932524 6cb4dbe 67e7e14 6cb4dbe 67e7e14 cb9ca26 67e7e14 c65f546 67e7e14 6cb4dbe c65f546 cb9ca26 c65f546 e983327 6cb4dbe 09ac12e f0efcd9 09ac12e 65275be f932524 c755f1c f932524 d13e84f 7181a20 d13e84f f932524 411b7b7 f932524 411b7b7 ef2ab0c f932524 67e7e14 ef2ab0c f932524 da23fc7 65275be 67e7e14 1210377 67e7e14 cb9ca26 67e7e14 c65f546 67e7e14 7cecffc c65f546 cb9ca26 3ef6a0f cb9ca26 3ef6a0f cb9ca26 c65f546 e983327 09ac12e 3ef6a0f 7cecffc 3ef6a0f 7cecffc d511c44 932e273 d511c44 932e273 c65f546 7cecffc f932524 7cecffc d511c44 d066a0e 0b84d55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import pytorch_lightning as pl
from neuralforecast.core import NeuralForecast
from neuralforecast.models import NHITS, TimesNet, LSTM, TFT
from neuralforecast.losses.pytorch import HuberMQLoss
from neuralforecast.utils import AirPassengersDF
import time
from st_aggrid import AgGrid
from nixtla import NixtlaClient
import os
st.set_page_config(layout='wide')
@st.cache_resource
def load_model(path, freq):
nf = NeuralForecast.load(path=path)
return nf
@st.cache_resource
def load_all_models():
nhits_paths = {
'D': './M4/NHITS/daily',
'M': './M4/NHITS/monthly',
'H': './M4/NHITS/hourly',
'W': './M4/NHITS/weekly',
'Y': './M4/NHITS/yearly'
}
timesnet_paths = {
'D': './M4/TimesNet/daily',
'M': './M4/TimesNet/monthly',
'H': './M4/TimesNet/hourly',
'W': './M4/TimesNet/weekly',
'Y': './M4/TimesNet/yearly'
}
lstm_paths = {
'D': './M4/LSTM/daily',
'M': './M4/LSTM/monthly',
'H': './M4/LSTM/hourly',
'W': './M4/LSTM/weekly',
'Y': './M4/LSTM/yearly'
}
tft_paths = {
'D': './M4/TFT/daily',
'M': './M4/TFT/monthly',
'H': './M4/TFT/hourly',
'W': './M4/TFT/weekly',
'Y': './M4/TFT/yearly'
}
nhits_models = {freq: load_model(path, freq) for freq, path in nhits_paths.items()}
timesnet_models = {freq: load_model(path, freq) for freq, path in timesnet_paths.items()}
lstm_models = {freq: load_model(path, freq) for freq, path in lstm_paths.items()}
tft_models = {freq: load_model(path, freq) for freq, path in tft_paths.items()}
return nhits_models, timesnet_models, lstm_models, tft_models
def generate_forecast(model, df,tag=False):
if tag == 'retrain':
forecast_df = model.predict()
else:
forecast_df = model.predict(df=df)
return forecast_df
def determine_frequency(df):
df['ds'] = pd.to_datetime(df['ds'])
df = df.drop_duplicates(subset='ds')
df = df.set_index('ds')
# # Create a complete date range
# full_range = pd.date_range(start=df.index.min(), end=df.index.max(),freq=freq)
# # Reindex the DataFrame to this full date range
# df_full = df.reindex(full_range)
# Infer the frequency
# freq = pd.infer_freq(df_full.index)
freq = pd.infer_freq(df.index)
if not freq:
st.warning('The forecast will use default Daily forecast due to date inconsistency. Please check your data.',icon="⚠️")
freq = 'D'
return freq
def plot_forecasts_matplotlib(forecast_df, train_df, title):
fig, ax = plt.subplots(1, 1, figsize=(20, 7))
plot_df = pd.concat([train_df, forecast_df]).set_index('ds')
historical_col = 'y'
forecast_col = next((col for col in plot_df.columns if 'median' in col), None)
lo_col = next((col for col in plot_df.columns if 'lo-90' in col), None)
hi_col = next((col for col in plot_df.columns if 'hi-90' in col), None)
if forecast_col is None:
raise KeyError("No forecast column found in the data.")
plot_df[[historical_col, forecast_col]].plot(ax=ax, linewidth=2, label=['Historical', 'Forecast'])
if lo_col and hi_col:
ax.fill_between(
plot_df.index,
plot_df[lo_col],
plot_df[hi_col],
color='blue',
alpha=0.3,
label='90% Confidence Interval'
)
ax.set_title(title, fontsize=22)
ax.set_ylabel('Value', fontsize=20)
ax.set_xlabel('Timestamp [t]', fontsize=20)
ax.legend(prop={'size': 15})
ax.grid()
st.pyplot(fig)
import plotly.graph_objects as go
def plot_forecasts(forecast_df, train_df, title):
# Combine historical and forecast data
plot_df = pd.concat([train_df, forecast_df]).set_index('ds')
# Find relevant columns
historical_col = 'y'
forecast_col = next((col for col in plot_df.columns if 'median' in col), None)
lo_col = next((col for col in plot_df.columns if 'lo-90' in col), None)
hi_col = next((col for col in plot_df.columns if 'hi-90' in col), None)
if forecast_col is None:
raise KeyError("No forecast column found in the data.")
# Create Plotly figure
fig = go.Figure()
# Add historical data
fig.add_trace(go.Scatter(x=plot_df.index, y=plot_df[historical_col], mode='lines', name='Historical'))
# Add forecast data
fig.add_trace(go.Scatter(x=plot_df.index, y=plot_df[forecast_col], mode='lines', name='Forecast'))
# Add confidence interval if available
if lo_col and hi_col:
fig.add_trace(go.Scatter(
x=plot_df.index,
y=plot_df[hi_col],
mode='lines',
line=dict(color='rgba(0,100,80,0.2)'),
showlegend=False
))
fig.add_trace(go.Scatter(
x=plot_df.index,
y=plot_df[lo_col],
mode='lines',
line=dict(color='rgba(0,100,80,0.2)'),
fill='tonexty',
fillcolor='rgba(0,100,80,0.2)',
name='90% Confidence Interval'
))
# Update layout
fig.update_layout(
title=title,
xaxis_title='Timestamp [t]',
yaxis_title='Value',
template='plotly_white'
)
# Display the plot
st.plotly_chart(fig)
def select_model_based_on_frequency(freq, nhits_models, timesnet_models, lstm_models, tft_models):
if freq == 'D':
return nhits_models['D'], timesnet_models['D'], lstm_models['D'], tft_models['D']
elif freq == 'ME':
return nhits_models['M'], timesnet_models['M'], lstm_models['M'], tft_models['M']
elif freq == 'H':
return nhits_models['H'], timesnet_models['H'], lstm_models['H'], tft_models['H']
elif freq in ['W', 'W-SUN']:
return nhits_models['W'], timesnet_models['W'], lstm_models['W'], tft_models['W']
elif freq in ['Y', 'Y-DEC']:
return nhits_models['Y'], timesnet_models['Y'], lstm_models['Y'], tft_models['Y']
else:
raise ValueError(f"Unsupported frequency: {freq}")
def select_model(horizon, model_type, max_steps=50):
if model_type == 'NHITS':
return NHITS(input_size=5 * horizon,
h=horizon,
max_steps=max_steps,
stack_types=3*['identity'],
n_blocks=3*[1],
mlp_units=[[256, 256] for _ in range(3)],
n_pool_kernel_size=3*[1],
batch_size=32,
scaler_type='standard',
n_freq_downsample=[12, 4, 1],
loss=HuberMQLoss(level=[90]))
elif model_type == 'TimesNet':
return TimesNet(h=horizon,
input_size=horizon * 5,
hidden_size=32,
conv_hidden_size=64,
loss=HuberMQLoss(level=[90]),
scaler_type='standard',
learning_rate=1e-3,
max_steps=max_steps,
val_check_steps=200,
valid_batch_size=64,
windows_batch_size=128,
inference_windows_batch_size=512)
elif model_type == 'LSTM':
return LSTM(h=horizon,
input_size=horizon * 5,
loss=HuberMQLoss(level=[90]),
scaler_type='standard',
encoder_n_layers=3,
encoder_hidden_size=256,
context_size=10,
decoder_hidden_size=256,
decoder_layers=3,
max_steps=max_steps)
elif model_type == 'TFT':
return TFT(h=horizon,
input_size=horizon*5,
hidden_size=96,
loss=HuberMQLoss(level=[90]),
learning_rate=0.005,
scaler_type='standard',
windows_batch_size=128,
max_steps=max_steps,
val_check_steps=200,
valid_batch_size=64,
enable_progress_bar=True)
else:
raise ValueError(f"Unsupported model type: {model_type}")
def model_train(df,model, freq):
nf = NeuralForecast(models=[model], freq=freq)
df['ds'] = pd.to_datetime(df['ds'])
nf.fit(df)
return nf
def forecast_time_series(df, model_type, horizon, max_steps,y_col):
start_time = time.time() # Start timing
freq = determine_frequency(df)
st.sidebar.write(f"Data frequency: {freq}")
selected_model = select_model(horizon, model_type, max_steps)
st.spinner(f"Training {model_type} model...")
model = model_train(df, selected_model,freq)
forecast_results = {}
forecast_results[model_type] = generate_forecast(model, df, tag='retrain')
st.session_state.forecast_results = forecast_results
for model_name, forecast_df in forecast_results.items():
plot_forecasts(forecast_df, df, f'{model_name} Forecast for {y_col}')
end_time = time.time() # End timing
time_taken = end_time - start_time
st.success(f"Time taken for {model_type} forecast: {time_taken:.2f} seconds")
if 'forecast_results' in st.session_state:
forecast_results = st.session_state.forecast_results
st.markdown('You can download Input and Forecast Data below')
tab_insample, tab_forecast = st.tabs(
["Input data", "Forecast"]
)
with tab_insample:
df_grid = df.drop(columns="unique_id")
st.write(df_grid)
# grid_table = AgGrid(
# df_grid,
# theme="alpine",
# )
with tab_forecast:
if model_type in forecast_results:
df_grid = forecast_results[model_type]
st.write(df_grid)
# grid_table = AgGrid(
# df_grid,
# theme="alpine",
# )
@st.cache_data
def load_default():
df = AirPassengersDF.copy()
return df
def transfer_learning_forecasting():
st.title("Zero-shot Forecasting")
st.markdown("""
Instant time series forecasting and visualization by using various pre-trained deep neural network-based model trained on M4 data.
""")
nhits_models, timesnet_models, lstm_models, tft_models = load_all_models()
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
if 'uploaded_file' not in st.session_state:
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
st.session_state.uploaded_file = uploaded_file
else:
df = load_default()
st.session_state.df = df
else:
if st.checkbox("Upload a new file (CSV)"):
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
st.session_state.uploaded_file = uploaded_file
else:
df = st.session_state.df
else:
df = st.session_state.df
columns = df.columns.tolist()
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
target_columns = [col for col in columns if (col != ds_col) and (col != 'unique_id')]
y_col = st.selectbox("Select Target column", options=target_columns, index=0)
st.session_state.ds_col = ds_col
st.session_state.y_col = y_col
# Model selection and forecasting
st.sidebar.subheader("Model Selection and Forecasting")
model_choice = st.sidebar.selectbox("Select model", ["NHITS", "TimesNet", "LSTM", "TFT"])
horizon = st.sidebar.number_input("Forecast horizon", value=12)
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
df['unique_id']=1
df = df[['unique_id','ds','y']]
# Determine frequency of data
frequency = determine_frequency(df)
st.sidebar.write(f"Detected frequency: {frequency}")
nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
forecast_results = {}
if st.sidebar.button("Submit"):
start_time = time.time() # Start timing
if model_choice == "NHITS":
forecast_results['NHITS'] = generate_forecast(nhits_model, df)
elif model_choice == "TimesNet":
forecast_results['TimesNet'] = generate_forecast(timesnet_model, df)
elif model_choice == "LSTM":
forecast_results['LSTM'] = generate_forecast(lstm_model, df)
elif model_choice == "TFT":
forecast_results['TFT'] = generate_forecast(tft_model, df)
st.session_state.forecast_results = forecast_results
for model_name, forecast_df in forecast_results.items():
plot_forecasts(forecast_df.iloc[:horizon,:], df, f'{model_name} Forecast for {y_col}')
end_time = time.time() # End timing
time_taken = end_time - start_time
st.success(f"Time taken for {model_choice} forecast: {time_taken:.2f} seconds")
if 'forecast_results' in st.session_state:
forecast_results = st.session_state.forecast_results
st.markdown('You can download Input and Forecast Data below')
tab_insample, tab_forecast = st.tabs(
["Input data", "Forecast"]
)
with tab_insample:
df_grid = df.drop(columns="unique_id")
st.write(df_grid)
# grid_table = AgGrid(
# df_grid,
# theme="alpine",
# )
with tab_forecast:
if model_choice in forecast_results:
df_grid = forecast_results[model_choice]
st.write(df_grid)
# grid_table = AgGrid(
# df_grid,
# theme="alpine",
# )
def dynamic_forecasting():
st.title("Personalized Neural Forecasting")
st.markdown("""
Train time series forecasting model from scratch and provide forecasts/visualization by using various deep neural network-based model trained on user data.
Forecasting speed depends on CPU/GPU availabilty.
""")
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
if 'uploaded_file' not in st.session_state:
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
st.session_state.uploaded_file = uploaded_file
else:
df = load_default()
st.session_state.df = df
else:
if st.checkbox("Upload a new file (CSV)"):
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
st.session_state.uploaded_file = uploaded_file
else:
df = st.session_state.df
else:
df = st.session_state.df
columns = df.columns.tolist()
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
target_columns = [col for col in columns if (col != ds_col) and (col != 'unique_id')]
y_col = st.selectbox("Select Target column", options=target_columns, index=0)
st.session_state.ds_col = ds_col
st.session_state.y_col = y_col
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
df['unique_id']=1
df = df[['unique_id','ds','y']]
# Dynamic forecasting
st.sidebar.subheader("Dynamic Model Selection and Forecasting")
dynamic_model_choice = st.sidebar.selectbox("Select model for dynamic forecasting", ["NHITS", "TimesNet", "LSTM", "TFT"], key="dynamic_model_choice")
dynamic_horizon = st.sidebar.number_input("Forecast horizon", value=12)
dynamic_max_steps = st.sidebar.number_input('Max steps', value=20)
if st.sidebar.button("Submit"):
with st.spinner('Training model. This may take few minutes...'):
forecast_time_series(df, dynamic_model_choice, dynamic_horizon, dynamic_max_steps,y_col)
def timegpt_fcst():
nixtla_token = os.environ.get("NIXTLA_API_KEY")
nixtla_client = NixtlaClient(
api_key = nixtla_token
)
st.title("TimeGPT Forecasting")
st.markdown("""
Instant time series forecasting and visualization by using the TimeGPT API provided by Nixtla.
""")
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
if 'uploaded_file' not in st.session_state:
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
st.session_state.uploaded_file = uploaded_file
else:
df = load_default()
st.session_state.df = df
else:
if st.checkbox("Upload a new file (CSV)"):
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
st.session_state.uploaded_file = uploaded_file
else:
df = st.session_state.df
else:
df = st.session_state.df
columns = df.columns.tolist()
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
target_columns = [col for col in columns if (col != ds_col) and (col != 'unique_id')]
y_col = st.selectbox("Select Target column", options=target_columns, index=0)
h = st.number_input("Forecast horizon", value=14)
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
id_col = 'ts_test'
df['unique_id']=id_col
df = df[['unique_id','ds','y']]
freq = determine_frequency(df)
df = df.drop_duplicates(subset=['ds']).reset_index(drop=True)
plot_type = st.sidebar.selectbox("Select Visualization", ["Matplotlib", "Plotly"])
if st.sidebar.button("Submit"):
start_time = time.time()
forecast_df = nixtla_client.forecast(
df=df,
h=h,
freq=freq,
level=[90]
)
st.session_state.forecast_df = forecast_df
if 'forecast_df' in st.session_state:
forecast_df = st.session_state.forecast_df
if plot_type == "Matplotlib":
# Convert the Plotly figure to a Matplotlib figure if needed
# Note: You may need to handle this conversion depending on your specific use case
# For now, this example assumes that you are using a Matplotlib figure
fig = nixtla_client.plot(df, forecast_df, level=[90], engine='matplotlib')
st.pyplot(fig)
elif plot_type == "Plotly":
# Plotly figure directly
fig = nixtla_client.plot(df, forecast_df, level=[90], engine='plotly')
st.plotly_chart(fig)
end_time = time.time() # End timing
time_taken = end_time - start_time
st.success(f"Time taken for TimeGPT forecast: {time_taken:.2f} seconds")
if 'forecast_df' in st.session_state:
forecast_df = st.session_state.forecast_df
st.markdown('You can download Input and Forecast Data below')
tab_insample, tab_forecast = st.tabs(
["Input data", "Forecast"]
)
with tab_insample:
df_grid = df.drop(columns="unique_id")
st.write(df_grid)
# grid_table = AgGrid(
# df_grid,
# theme="alpine",
# )
with tab_forecast:
df_grid = forecast_df
st.write(df_grid)
# grid_table = AgGrid(
# df_grid,
# theme="alpine",
# )
def timegpt_anom():
nixtla_token = os.environ.get("NIXTLA_API_KEY")
nixtla_client = NixtlaClient(
api_key = nixtla_token
)
st.title("TimeGPT Anomaly Detection")
st.markdown("""
Instant time series anomaly detection and visualization by using the TimeGPT API provided by Nixtla.
""")
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
if 'uploaded_file' not in st.session_state:
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
st.session_state.uploaded_file = uploaded_file
else:
df = load_default()
st.session_state.df = df
else:
if st.checkbox("Upload a new file (CSV)"):
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
st.session_state.uploaded_file = uploaded_file
else:
df = st.session_state.df
else:
df = st.session_state.df
columns = df.columns.tolist()
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
target_columns = [col for col in columns if (col != ds_col) and (col != 'unique_id')]
y_col = st.selectbox("Select Target column", options=target_columns, index=0)
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
id_col = 'ts_test'
df['unique_id']=id_col
df = df[['unique_id','ds','y']]
freq = determine_frequency(df)
df = df.drop_duplicates(subset=['ds']).reset_index(drop=True)
plot_type = st.sidebar.selectbox("Select Visualization", ["Matplotlib", "Plotly"])
if st.sidebar.button("Submit"):
start_time=time.time()
anom_df = nixtla_client.detect_anomalies(
df=df,
freq=freq,
level=90
)
st.session_state.anom_df = anom_df
if 'anom_df' in st.session_state:
anom_df = st.session_state.anom_df
if plot_type == "Matplotlib":
# Convert the Plotly figure to a Matplotlib figure if needed
# Note: You may need to handle this conversion depending on your specific use case
# For now, this example assumes that you are using a Matplotlib figure
fig = nixtla_client.plot(df, anom_df, level=[90], engine='matplotlib')
st.pyplot(fig)
elif plot_type == "Plotly":
# Plotly figure directly
fig = nixtla_client.plot(df, anom_df, level=[90], engine='plotly')
st.plotly_chart(fig)
end_time = time.time() # End timing
time_taken = end_time - start_time
st.success(f"Time taken for TimeGPT forecast: {time_taken:.2f} seconds")
st.markdown('You can download Input and Forecast Data below')
tab_insample, tab_forecast = st.tabs(
["Input data", "Forecast"]
)
with tab_insample:
df_grid = df.drop(columns="unique_id")
st.write(df_grid)
# grid_table = AgGrid(
# df_grid,
# theme="alpine",
# )
with tab_forecast:
df_grid = anom_df
st.write(df_grid)
# grid_table = AgGrid(
# df_grid,
# theme="alpine",
# )
pg = st.navigation({
"Neuralforecast": [
# Load pages from functions
st.Page(transfer_learning_forecasting, title="Zero-shot Forecasting", default=True, icon=":material/query_stats:"),
st.Page(dynamic_forecasting, title="Personalized Neural Forecasting", icon=":material/monitoring:"),
],
"TimeGPT": [
# Load pages from functions
st.Page(timegpt_fcst, title="TimeGPT Forecast", icon=":material/smart_toy:"),
st.Page(timegpt_anom, title="TimeGPT Anomalies Detection", icon=":material/detector_offline:")
]
})
pg.run()
|