File size: 13,095 Bytes
f0734be
864d91e
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
274d1f4
 
f0734be
d0463a0
 
 
 
 
d6152ea
e624859
9a5ce03
a7349ba
 
dacc7c0
e3a3d3b
3631cca
334ba26
 
9a5ce03
494aa89
6858546
334ba26
494aa89
 
0e313c1
9a5ce03
4e61093
274d1f4
 
 
 
6858546
 
c69efb6
9a5ce03
9e5813b
 
 
 
 
e3a3d3b
fb2aab1
4e61093
d0463a0
 
95e63ac
 
 
e624859
95e63ac
a7349ba
460d854
d0463a0
95e63ac
80d5cfd
 
 
 
 
 
 
 
 
d0463a0
95e63ac
a7349ba
d0463a0
0b02caa
80d5cfd
460d854
 
3c6c972
 
 
0f06271
80d5cfd
 
d0463a0
 
3c6c972
80d5cfd
0f06271
 
80d5cfd
 
3c6c972
95e63ac
d0463a0
 
 
3c6c972
d0463a0
 
 
 
 
3c6c972
d6152ea
80d5cfd
d6152ea
d0463a0
 
 
 
 
 
 
 
d6152ea
d0463a0
 
 
 
 
 
 
 
 
 
 
 
e624859
 
 
 
 
d0463a0
 
 
 
 
e624859
d0463a0
 
 
e624859
 
 
 
 
 
 
 
 
 
 
d0463a0
 
 
936af04
4e61093
4184e5e
6858546
936af04
 
 
 
 
4525308
9a5ce03
4184e5e
 
d9bd34f
 
e624859
4184e5e
fb2aab1
e3a3d3b
6858546
936af04
f0734be
274d1f4
 
 
6858546
 
e3a3d3b
274d1f4
 
 
 
a7c229b
90f35d6
e3a3d3b
 
 
 
 
 
90f35d6
eba6e2a
274d1f4
864d91e
9a5ce03
658d2e0
460d854
37c8a73
902333f
 
 
 
 
6858546
4e61093
3631cca
 
d0463a0
3631cca
 
 
 
f9158d1
a7c229b
3631cca
8af544f
3631cca
 
 
 
3f9d6c3
d0463a0
3631cca
d0463a0
a7c229b
3f9d6c3
d0463a0
494ecb7
 
 
 
3f9d6c3
d0463a0
 
 
 
 
 
 
 
 
 
 
9a5ce03
4c8161e
bdb69d5
a919084
 
d0463a0
a919084
 
 
c2adf9a
 
 
 
fc18b37
c2adf9a
 
a919084
c2adf9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a919084
c2adf9a
 
 
 
a919084
c2adf9a
d0463a0
 
 
 
 
8588a66
27b66bb
d0463a0
27b66bb
 
 
 
 
 
 
 
 
bdb69d5
 
4c8161e
bdb69d5
c2adf9a
95e63ac
3631cca
27b66bb
d0463a0
 
6c32a43
d0463a0
 
 
 
 
 
 
a2919e9
 
c2adf9a
 
 
4c8161e
c2adf9a
3f9d6c3
d0463a0
 
c2adf9a
d0463a0
c2adf9a
 
3631cca
d0463a0
 
6858546
3631cca
27b66bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder

# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"  # No GPU available, use CPU only
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"    # Suppress TensorFlow logging

# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()

# Load intents and chatbot training data
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")

# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))

# Disease Prediction Code
def load_data():
    try:
        df = pd.read_csv("Training.csv")
        tr = pd.read_csv("Testing.csv")
    except FileNotFoundError:
        raise RuntimeError("Data files not found. Please ensure `Training.csv` and `Testing.csv` are uploaded correctly.")

    # Encode diseases in a dictionary
    disease_dict = {
        'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
        'Peptic ulcer diseae': 5, 'AIDS': 6, 'Diabetes ': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
        'Hypertension ': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13,
        'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18, 'Hepatitis A': 19,
        'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23, 'Alcoholic hepatitis': 24,
        'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27, 'Dimorphic hemorrhoids(piles)': 28,
        'Heart attack': 29, 'Varicose veins': 30, 'Hypothyroidism': 31, 'Hyperthyroidism': 32,
        'Hypoglycemia': 33, 'Osteoarthritis': 34, 'Arthritis': 35,
        '(vertigo) Paroxysmal Positional Vertigo': 36, 'Acne': 37, 'Urinary tract infection': 38,
        'Psoriasis': 39, 'Impetigo': 40
    }

    # Replace prognosis values with numerical categories
    df.replace({'prognosis': disease_dict}, inplace=True)

    # Check unique values in prognosis for debugging
    print("Unique values in prognosis after mapping:", df['prognosis'].unique())

    # Ensure prognosis is purely numerical after mapping
    if df['prognosis'].dtype == 'object':  # Check for unmapped entries
        raise ValueError(f"The prognosis contains unmapped values: {df['prognosis'].unique()}")

    df['prognosis'] = df['prognosis'].astype(int)  # Convert to integer if necessary
    df = df.infer_objects()  # Remove 'copy' argument

    tr.replace({'prognosis': disease_dict}, inplace=True)

    # Check unique values in testing data
    if tr['prognosis'].dtype == 'object':
        raise ValueError(f"Testing data prognosis contains unmapped values: {tr['prognosis'].unique()}")
    
    tr['prognosis'] = tr['prognosis'].astype(int)  # Convert to integer if necessary
    tr = tr.infer_objects()  # Remove 'copy' argument

    return df, tr, disease_dict

df, tr, disease_dict = load_data()
l1 = list(df.columns[:-1])  # All columns except prognosis
X = df[l1]
y = df['prognosis']
X_test = tr[l1]
y_test = tr['prognosis']

# Encode the target variable with LabelEncoder if still in string format
le = LabelEncoder()
y_encoded = le.fit_transform(y)  # Needs to be string labels, assuming df['prognosis'] has no numerical labels

def train_models():
    models = {
        "Decision Tree": DecisionTreeClassifier(),
        "Random Forest": RandomForestClassifier(),
        "Naive Bayes": GaussianNB()
    }
    trained_models = {}
    for model_name, model_obj in models.items():
        model_obj.fit(X, y_encoded)  # Use encoded labels
        acc = accuracy_score(y_test, model_obj.predict(X_test))
        trained_models[model_name] = (model_obj, acc)
    return trained_models

trained_models = train_models()

def predict_disease(model, symptoms):
    input_test = np.zeros(len(l1))
    for symptom in symptoms:
        if symptom in l1:
            input_test[l1.index(symptom)] = 1
    prediction = model.predict([input_test])[0]
    confidence = model.predict_proba([input_test])[0][prediction] if hasattr(model, 'predict_proba') else None
    return {
        "disease": list(disease_dict.keys())[list(disease_dict.values()).index(prediction)],
        "confidence": confidence
    }

def disease_prediction_interface(symptoms):
    symptoms_selected = [s for s in symptoms if s != "None"]
    
    if len(symptoms_selected) < 3:
        return ["Please select at least 3 symptoms for accurate prediction."]
    
    results = []
    for model_name, (model, acc) in trained_models.items():
        prediction_info = predict_disease(model, symptoms_selected)
        predicted_disease = prediction_info["disease"]
        confidence_score = prediction_info["confidence"]
        
        result = f"{model_name} Prediction: Predicted Disease: **{predicted_disease}**"
        if confidence_score is not None:
            result += f" (Confidence: {confidence_score:.2f})"
        result += f" (Accuracy: {acc * 100:.2f}%)"
        
        results.append(result)

    return results

# Helper Functions (for chatbot)
def bag_of_words(s, words):
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def generate_chatbot_response(message, history):
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(result)]
        response = next((random.choice(intent["responses"]) for intent in intents_data["intents"] if intent["tag"] == tag), "I'm sorry, I didn't understand that. πŸ€”")
    except Exception as e:
        response = f"Error: {e}"
    history.append((message, response))
    return history, response

def analyze_sentiment(user_input):
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return f"Sentiment: {sentiment_map[sentiment_class]}"

def detect_emotion(user_input):
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]["label"].lower().strip()
    emotion_map = {
        "joy": "Joy 😊",
        "anger": "Anger 😠",
        "sadness": "Sadness 😒",
        "fear": "Fear 😨",
        "surprise": "Surprise 😲",
        "neutral": "Neutral 😐",
    }
    return emotion_map.get(emotion, "Unknown πŸ€”"), emotion

def generate_suggestions(emotion):
    emotion_key = emotion.lower()
    suggestions = {
        # Define suggestions based on the detected emotion
    }
    
    formatted_suggestions = [
        [title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
    ]
    return formatted_suggestions

def get_health_professionals_and_map(location, query):
    try:
        if not location or not query:
            return [], ""
        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
            professionals = []
            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            for place in places_result:
                professionals.append([place['name'], place.get('vicinity', 'No address provided')])
                folium.Marker(
                    location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
                    popup=f"{place['name']}"
                ).add_to(map_)
            return professionals, map_._repr_html_()
        return [], ""
    except Exception as e:
        return [], ""

# Main Application Logic
def app_function(user_input, location, query, symptoms, history):
    chatbot_history, _ = generate_chatbot_response(user_input, history)
    sentiment_result = analyze_sentiment(user_input)
    emotion_result, cleaned_emotion = detect_emotion(user_input)
    suggestions = generate_suggestions(cleaned_emotion)
    professionals, map_html = get_health_professionals_and_map(location, query)
    disease_results = disease_prediction_interface(symptoms)
    
    return (
        chatbot_history, 
        sentiment_result, 
        emotion_result, 
        suggestions, 
        professionals, 
        map_html,
        disease_results
    )

# CSS Styling
custom_css = """
body {
    font-family: 'Roboto', sans-serif;
    background-color: #3c6487;
    color: white;
}
h1 {
    background: #ffffff;
    color: #000000;
    border-radius: 8px;
    padding: 10px;
    font-weight: bold;
    text-align: center;
    font-size: 2.5rem;
}
textarea, input {
    background: transparent;
    color: black;
    border: 2px solid orange;
    padding: 8px;
    font-size: 1rem;
    caret-color: black;
    outline: none;
    border-radius: 8px;
}
textarea:focus, input:focus {
    background: transparent;
    color: black;
    border: 2px solid orange;
    outline: none;
}
.df-container {
    background: white;
    color: black;
    border: 2px solid orange;
    border-radius: 10px;
    padding: 10px;
    font-size: 14px;
    max-height: 400px;
    height: auto;
    overflow-y: auto;
}
#suggestions-title {
    text-align: center !important;
    font-weight: bold !important;
    color: white !important;
    font-size: 4.2rem !important;
    margin-bottom: 20px !important;
}
.gr-button {
    background-color: #ae1c93;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 2px 4px rgba(0, 0, 0, 0.06);
    transition: background-color 0.3s ease;
}
.gr-button:hover {
    background-color: #8f167b;
}
.gr-button:active {
    background-color: #7f156b;
}
"""

# Gradio Application
with gr.Blocks(css=custom_css) as app:
    gr.HTML("<h1>🌟 Well-Being Companion</h1>")
    
    with gr.Row():
        user_input = gr.Textbox(label="Please Enter Your Message Here")
        location = gr.Textbox(label="Your Current Location Here")
        query = gr.Textbox(label="Search Health Professionals Nearby")
        
    with gr.Row():
        symptom1 = gr.Dropdown(choices=["None"] + l1, label="Symptom 1")
        symptom2 = gr.Dropdown(choices=["None"] + l1, label="Symptom 2")
        symptom3 = gr.Dropdown(choices=["None"] + l1, label="Symptom 3")
        symptom4 = gr.Dropdown(choices=["None"] + l1, label="Symptom 4")
        symptom5 = gr.Dropdown(choices=["None"] + l1, label="Symptom 5")

    submit = gr.Button(value="Submit", variant="primary")

    chatbot = gr.Chatbot(label="Chat History")
    sentiment = gr.Textbox(label="Detected Sentiment")
    emotion = gr.Textbox(label="Detected Emotion")
    
    gr.Markdown("Suggestions", elem_id="suggestions-title")
    
    suggestions = gr.DataFrame(headers=["Title", "Link"])  # Suggestions DataFrame
    professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"])  # Professionals DataFrame
    map_html = gr.HTML(label="Interactive Map")
    disease_predictions = gr.Textbox(label="Disease Predictions")  # For Disease Prediction Results

    submit.click(
        app_function,
        inputs=[user_input, location, query, [symptom1, symptom2, symptom3, symptom4, symptom5], chatbot],
        outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html, disease_predictions],
    )

app.launch()